NMED AIR QUALITY BUREAU TITLE V SIGNIFICANT MODIFICATION APPLICATION IACX Roswell LLC Red Bluff No. 3 Compressor Station Justin Wheeler - Director of Environmental, Health and Safety ### **IACX Roswell LLC** 5001 LBJ Freeway, Suite 300 Dallas, TX 75244 (972) 679-2147 Rachel Reese - Senior Consultant ### TRINITY CONSULTANTS 9400 Holly Ave NE Building 3, Suite 300 Albuquerque, NM 87122 (505) 266-6611 June 2021 Project 213201.0089 9400 Holly Ave NE, Bldg 3, Ste 300, Albuquerque, NM 87122 / P 505.266.6611 / trinityconsultants.com June 23, 2021 Permit Programs Manager NMED Air Quality Bureau 525 Camino de los Marquez Suite 1 Santa Fe, NM 87505-1816 RE: Application for Title V Renewal IACX Roswell LLC – Red Bluff No. 3 Compressor Station ### Permit Programs Manager: IACX Roswell LLC is submitting this application pursuant to 20.2.70.404.C.1.a NMAC for a Significant Modification to Title V permit P073-R3M2 for the Red Bluff No. 3 Compressor Station. This application is submitted in response to the Notice of Violation (NOV) (Track No. IACX-0019-1901) issued on July 29, 2019. This Title V Modification is the final corrective action for Violation 1 in the NOV and is submitted within 12-months of issuance of NSR permit 0412-M4. The facility is located approximately 23 miles northeast of Roswell, NM. The facility is currently permitted under NSR permit 0412-M4 and Title V permit P073-R3M2. The format and content of this application are consistent with the Bureau's current policy regarding Title V applications. Enclosed are two hard copies of the application, including an original certification and two discs containing the electronic files. Please feel free to contact either myself at rreese@trinityconsultants.com or Justin Wheeler, Director of Environmental, Health and Safety for IACX Roswell, at (972) 679-2147 if you have any questions regarding this application. Sincerely, Rachel Reese Senior Consultant Cc: Justin Wheeler (IACX Roswell) Trinity Project File 213201.0089 ### **Mail Application To:** New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505 Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb For Department use only: AIRS No.: # **Universal Air Quality Permit Application** ### Use this application for NOI, NSR, or Title V sources. Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions | for other permits. | |---| | This application is submitted as (check all that apply): ☐ Request for a No Permit Required Determination (no fee) ☐ Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Construction Status: ☐ Not Constructed ☑ Existing Permitted (or NOI) Facility ☐ Existing Non-permitted (or NOI) Facility Minor Source: ☐ a NOI 20.2.73 NMAC ☐ 20.2.72 NMAC application or revision ☐ 20.2.72.300 NMAC Streamline application Title V Source: ☐ Title V (new) ☐ Title V renewal ☐ TV minor mod. ☑ TV significant mod. TV Acid Rain: ☐ New ☐ Renewal PSD Major Source: ☐ PSD major source (new) ☐ minor modification to a PSD source ☐ a PSD major modification | | | | Acknowledgements: ☑ I acknowledge that a pre-application meeting is available to me upon request. ☑ Title V Operating, Title IV Acid Rain, and NPR applications have no fees. □ \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications). | | ☐ Check No.: in the amount of | | I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page. I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-2/. This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.) | | Citation: Please provide the low level citation under which this application is being submitted: 20.2.70.404.C.1.a NMAC | | (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC) | ### **Section 1 – Facility Information** | | | AI # if known (see 1st | Updating
Permit/NOI #: P073- | | |-----|---|---|---------------------------------|--| | C | 4' 1 A. C If | 3 to 5 #s of permit | | | | Sec | tion 1-A: Company Information | IDEA ID No.): 19 | R3M2 | | | 1 | Facility Name: Red Bluff No. 3 Compressor Station | Plant primary SIC Code (4 digits): 4922 | | | | 1 | | Plant NAIC code (6 digits):48621 | | | | a | Facility Street Address (If no facility street address, provide directions from a prominent landmark): Go North out of Roswell, N.M. on U.S. Highway 285 approximately 17.5 miles past the Roswell city limits sign to Red Bluff Road (just before Mile Marker 132). Turn right (East) on Red Bluff Road and go 0.5 miles to "Y" in road (just before road with cattle guard that goes to El Paso Natural Gas Co.). Turn left at "Y" in the road and go 10.3 miles on main traveled road to cross road. Turn left at cross road and go 0.7 miles. Turn right and go 0.4 miles. Turn left and go 100 yards to station site. (Station is painted Carlsbad Cavern brown) | | | | | 2 | Plant Operator Company Name: IACX Roswell LLC | Phone/Fax: 972-960-3210/ N/A | | | |---|---|---|--|--| | a | Plant Operator Address: 5001 LBJ Freeway, Suite 300, Dallas, TX 75244 | | | | | ь | Plant Operator's New Mexico Corporate ID or Tax ID: 82-2010347 | | | | | 3 | Plant Owner(s) name(s): IACX Roswell LLC | Phone/Fax: 972-960-3210/ N/A | | | | a | Plant Owner(s) Mailing Address(s): 5001 LBJ Freeway, Suite 300, Dallas, | , TX 75244 | | | | 4 | Bill To (Company): IACX Roswell LLC | Phone/Fax: 972-679-2147/ N/A | | | | a | Mailing Address: 5001 LBJ Freeway, Suite 300, Dallas, TX 75244 | E-mail: justinwheeler@iacx.com | | | | 5 | □ Preparer: ☑ Consultant: Trinity Consultants, Inc. | Phone/Fax: 505-266-6611/ N/A | | | | a | Mailing Address: 9400 Holly Ave NE, Bldg 3, Suite 300, Albuquerque, NM 87122 | E-mail: rreese@trinityconsultants.com | | | | 6 | Plant Operator Contact: Justin Wheeler | Phone/Fax: 972-679-2147/ N/A | | | | a | Address: 5001 LBJ Freeway, Suite 300, Dallas, TX 75244 | E-mail: justinwheeler@iacx.com | | | | 7 | Air Permit Contact: Justin Wheeler | Title: Director of Environmental, Health and Safety | | | | a | E-mail: justinwheeler@iacx.com Phone/Fax: 972-679-2147/ N/A | | | | | b | Mailing Address: 5001 LBJ Freeway, Suite 300, Dallas, TX 75244 | | | | | c | The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau. | | | | **Section 1-B: Current Facility Status** | ~ • • | tion 1 B. Current I acmity Status | | | |-------|--|---|--| | 1.a | Has this facility already been constructed? ☑ Yes □ No | 1.b If yes to question 1.a, is it currently operating in New Mexico? ☑ Yes ☐ No | | | 2 |
If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? ☐ Yes ☑ No | If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ✓ Yes □ No | | | 3 | Is the facility currently shut down? ☐ Yes ☑ No | If yes, give month and year of shut down (MM/YY): N/A | | | 4 | Was this facility constructed before 8/31/1972 and continuously operated since 1972? ☐ Yes ☑ No | | | | 5 | If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972? □Yes □No ☑N/A | | | | 6 | Does this facility have a Title V operating permit (20.2.70 NMAC)? ✓ Yes ☐ No | If yes, the permit No. is: P073-R3M2 | | | 7 | Has this facility been issued a No Permit Required (NPR)? ☐ Yes ☑ No | If yes, the NPR No. is: N/A | | | 8 | Has this facility been issued a Notice of Intent (NOI)? ☐ Yes ☑ No | If yes, the NOI No. is: N/A | | | 9 | Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑ Yes □ No | If yes, the permit No. is: 0412-M4 | | | 10 | Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? ☐ Yes ☑ No | If yes, the register No. is: N/A | | Section 1-C: Facility Input Capacity & Production Rate | ~~~ | Section 1 St Tuesday Input Supurity & 11 Superior 1400 | | | | | |-----|--|--------------------|-----------------|-----------------------|--| | 1 | What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required) | | | | | | a | Current | Hourly: 1.04 MMscf | Daily: 25 MMscf | Annually: 9,125 MMscf | | | ь | Proposed | Hourly: 1.04 MMscf | Daily: 25 MMscf | Annually: 9,125 MMscf | | | 2 | What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required) | | | | | | a | Current | Hourly: 1.04 MMscf | Daily: 25 MMscf | Annually: 9,125 MMscf | |---|----------|--------------------|-----------------|-----------------------| | b | Proposed | Hourly: 1.04 MMscf | Daily: 25 MMscf | Annually: 9,125 MMscf | **Section 1-D: Facility Location Information** | Sect | tion I-D: F | <u>acility Loca</u> | tion Information | | | |------|---|-----------------------|--|--|--------------------------------| | 1 | Section: 10 | Range: 25E | Township: 7S | County: Chaves | Elevation (ft): 3,825 | | 2 | UTM Zone: □ 12 or ☑ 13 | | Datum: NAD 27 NAD | 83 🗹 WGS 84 | | | a | UTM E (in meters, to nearest 10 meters): 556,800 m | | UTM N (in meters, to nearest 10 meters): | 3,731,370 m | | | b | AND Latitude | (deg., min., sec.): | 33°43'15" | Longitude (deg., min., sec.): -104°2 | 23'13" | | 3 | Name and zip | code of nearest No | ew Mexico town: Roswell, | NM 88201 | | | 4 | Detailed Driving Instructions from nearest NM town (attach a road map if necessary): Go North out of Roswell, N.M. on U.S. Highway 285 approximately 17.5 miles past the Roswell city limits sign to Red Bluff Road (just before Mile Marker 132). Turn right (East) on Red Bluff Road and go 0.5 miles to "Y" in road (just before road with cattle guard that goes to El Paso Natural Gas Co.). Turn left at "Y" in the road and go 10.3 miles on main traveled road to cross road. Turn left at cross road and go 0.7 miles. Turn right and go 0.4 miles. Turn left and go 100 yards to station site. (Station is painted Carlsbad Cavern brown) | | | | | | 5 | The facility is 2 | 23 miles northeast | t of Roswell, NM. | | | | 6 | Status of land a | at facility (check of | one): 🗆 Private 🗆 Indian/Pu | eblo ☑ Federal BLM ☐ Federal Fo | rest Service □ Other (specify) | | 7 | List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Municipalities : None; Indian Tribes : None; Counties : Chaves. | | | | | | 8 | 20.2.72 NMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/aqb/modeling/class1 areas.html)? ✓ Yes ☐ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: Yes; Salt Creek Wilderness, 11.1 km. | | | | | | 9 | Name nearest (| Class I area: Salt (| Creek Wilderness | | | | 10 | Shortest distant | ce (in km) from fa | acility boundary to the boun | ndary of the nearest Class I area (to the | e nearest 10 meters):10.66 km | | 11 | | | | ions (AO is defined as the plant site i est residence, school or occupied stru | | | | Method(s) used | d to delineate the | Restricted Area: Fencing | | | | 12 | "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. | | | | | | 13 | Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? Yes No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites. | | | | | | 14 | Will this facilit | y operate in conju | | ated parties on the same property? | ⊠ No □ Yes | Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.) | 1 | Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24 | days
week): 7 | $(\frac{\text{weeks}}{\text{year}})$: 52 | $(\frac{\text{hours}}{\text{year}}): 8,760$ | | |---|---|------------------|---|---|------------| | 2 | Facility's maximum daily operating schedule (if less than 24 hours day)? Start: N/A | | □AM
□PM | End: N/A | □AM
□PM | | 3 | Month and year of anticipated start of construction: Upon receipt of permit | | | | | | 4 | Month and year of anticipated construction completion: TBD | | | | | | 5 | Month and year of anticipated startup of new or modified facil | ity: TBD | | |---|---|----------|-----| | 6 | Will this facility operate at this site for more than one year? | ☑ Yes | □No | **Section 1-F: Other Facility Information** | ~ • • • | | | | | |---------|--|--------------------|--|--| | 1 | Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? Yes No If yes, specify: NOV | | | | | a | If yes, NOV date or description of issue: 7/29/2019 | | NOV Tracking No: IACX-0019-1901 | | | b | Is this application in response to any issue listed in 1-F, 1 or | r 1a above? ☑ Yes | \square No If Yes, provide the 1c & 1d info below: | | | c | Document Title: Notice of Violation | Date: 7/29/2019 | Requirement # (or page # and paragraph #): Violation 1 | | | d | Provide the required text to be inserted in this permit: See S | ection 3 | | | | 2 | Is air quality dispersion modeling or modeling waiver being submitted with this application? | | | | | 3 | Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? ☐ Yes ☑ No | | | | | 4 | Will this facility be a source of federal Hazardous Air Pollutants (HAP)? ☑ Yes ☐ No | | | | | a | If Yes, what type of source? \square Major ($\square \ge 10$ tpy of any single HAP OR $\square \ge 25$ tpy of any combination of HAPS) OR \square Minor (\square <10 tpy of any single HAP AND \square <25 tpy of any combination of HAPS) | | | | | 5 | Is any unit exempt under 20.2.72.202.B.3 NMAC? ☐ Yes ☑ No | | | | | | If yes, include the name of company providing commercial electric power to the facility: N/A | | | | | a | Commercial power is purchased from a commercial utility site for the sole purpose of the user. | company, which spo | ecifically does not include power generated on | | Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only) 1 ☐ I have filled out Section 18, "Addendum for Streamline Applications." ☑ N/A (This is not a
Streamline application.) Section 1-H: Current Title V Information - Required for all applications from TV Sources (Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.70 NMAC (Major PSD/NNSP applications) and/or 20.2.70 NMAC (Title V)) | 20.2.7 | 4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMA | .C (11ttle V)) | | | |--------|--|---|----------------------|--| | 1 | Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Tony Hines | | Phone: 972-960-3219 | | | a | R.O. Title: Senior Vice President of Operations | R.O. Title: Senior Vice President of Operations R.O. e-mail: tonyhi | | | | b | R. O. Address: 5001 LBJ Freeway, Suite 300, Dallas, Texas 75244 | | | | | 2 | Alternate Responsible Official (20.2.70.300.D.2 NMAC): Justin Wheeler | | Phone: 972-679-2147 | | | a | A. R.O. Title: Director of Environmental, Health and Safety | A. R.O. e-mail: jus | stinwheeler@iacx.com | | | b | A. R. O. Address: 5001 LBJ Freeway, Suite 300, Dallas, TX 75244 | | | | | 3 | Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): IACX Energy LLC is the parent company of IACX Roswell LLC | | | | | 4 | Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): IACX Energy LLC is the parent company of IACX Roswell LLC | | | | | a | Address of Parent Company: 5001 LBJ Freeway, Suite 300, Dallas, Texas 75244 | | | | | 5 | Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): IACX Roswell LLC | | | | | 6 | Telephone numbers & names of the owners' agents and site contacts familiar with plant operations: Russell Gibbs, Roswell Area Manager: 575-363-3142 | | | | Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: N/A ### Section 1-I – Submittal Requirements Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following: ### **Hard Copy Submittal Requirements:** - 1) One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page. - 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed. - The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service. ### Electronic files sent by (check one): | ☑ CD/DVD attached to paper application | | | | | |---|--------------|--|--|--| | □ secure electronic transfer. Air Permit Contact Name | | | | | | | Email | | | | | | Phone number | | | | | | | | | | a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.** - 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review. - 5) If **air dispersion modeling** is required by the application type, include the **NMED Modeling Waiver** and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling **summary report only** should be submitted as hard copy(ies) unless otherwise indicated by the Bureau. - 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include, - a. one additional CD copy for US EPA, - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and, - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau. If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted. ### **Electronic Submittal Requirements** [in addition to the required hard copy(ies)]: - 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application. - 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc,), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions. - 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word. - 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial
update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant. ### **Table of Contents** **Section 1:** General Facility Information **Section 2:** Tables Section 3: Application Summary Section 4: Process Flow Sheet Section 5: Plot Plan Drawn to Scale **Section 6:** All Calculations **Section 7:** Information Used to Determine Emissions Section 8: Map(s) **Section 9:** Proof of Public Notice Section 10: Written Description of the Routine Operations of the Facility **Section 11:** Source Determination Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation **Section 14: Operational Plan to Mitigate Emissions** **Section 15: Alternative Operating Scenarios** Section 16: Air Dispersion Modeling Section 17: Compliance Test History Section 18: Addendum for Streamline Applications (streamline applications only) Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only) **Section 20:** Other Relevant Information **Section 21: Addendum for Landfill Applications** **Section 22:** Certification Page ### **Table 2-A: Regulated Emission Sources** Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply. | 1 | | | 1 | | | 1 | 1 | | | | 1 | | |-----------------------------|--|-------------|---------------|--------------|---|---|---|-----------------------------------|------------------------|---|--|-----------------------| | | | | | | Manufact-
urer's Rated | Requested
Permitted | Date of
Manufacture ² | Controlled by
Unit # | Source Classi- | | RICE Ignition | | | Unit
Number ¹ | Source Description | Make | Model# | Serial# | Capacity ³
(Specify
Units) | Capacity ³
(Specify
Units) | Date of
Construction/
Reconstruction ² | Emissions
vented to
Stack # | fication Code
(SCC) | For Each Piece of Equipment, Check One | Type (CI, SI,
4SLB, 4SRB,
2SLB) ⁴ | Replacing
Unit No. | | C-865 | RICE 4SLB | Caterpillar | G3516 TALE | 4EK04116 | 1265 hp | 1265 hp | 2/1/1991 | N/A | 31000203 | ✓ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit | 4SLB | N/A | | | | 1 | | | 1 | 1 | 6/5/2006 | C-865 | | ☐ To Be Modified ☐ To be Replaced | | | | C-867 | RICE 4SRB | Waukesha | L7042 GSIU | 350138 | 1195 hp | 1195 hp | 2/10/1984 | C-867 | 31000203 | ☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit | 4SRB | N/A | | 007 | Idea isia | ** dukesha | 27012 0010 | 330130 | 1175 lip | 1175 Hp | 2/25/2019 | C-867 | 31000203 | ☑ To Be Modified ☐ To be Replaced | iorab | 1 1/2 1 | | C-868 | RICE 4SRB | Waukesha | L7042 GSIU | 363094 | 1195 hp | 1195 hp | 2/10/1984 | C-868 | 31000203 | ☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit | 4SRB | N/A | | C-606 | RICL 45RD | waukesha | L/042 GS10 | 303074 | 1175 lip | 11/3/lip | 3/7/2019 | C-868 | 31000203 | ✓ To Be Modified ☐ To be Replaced | 4310 | IVA | | C-878 | RICE 4SLB | Superior | 8GTLA | 286649 | 1073 hp | 1073 hp | 1/7/1982 | N/A | 31000203 | ☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit | 4SLB | N/A | | C-676 | RICE 43LB | Superior | oGILA | 280049 | 10/3 lip | 10/3 lip | 1/7/1982 | C-878 | 31000203 | ☐ To Be Modified ☐ To be Replaced | 43LB | IN/A | | C-880 | RICE 4SLB | Caterpillar | G3516 TALE | 3RC00411-4EK | 1265 hp | 1265 hp | 1991 | N/A | 31000203 | ☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit | 4SLB | N/A | | C-880 | RICE 43LB | Caterpinai | G5510 TALE | 3KC00411-4EK | 1203 np | 1203 lip | 2017 | C-880 | 31000203 | ☐ To Be Modified ☐ To be Replaced | 43LB | IN/A | | C-320 | RICE 4SLB | Caterpillar | CG137-12 | TBD | 600 hp | 600 hp | 2019 | C-320 | 31000203 | ☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit | 4SRB | N/A | | C-320 | RICE 43LD | Caterpinai | CG157-12 | TBD | ооо пр | 000 lip | 2019 | C-320 | 31000203 | ☐ To Be Modified ☐ To be Replaced | 43KD | IN/A | | CAP-1 | Microturbine | Capstone | 65R-HG4-BU00 | 9620 | 65 kW | 87.2 hp | 11/15/2017 | N/A | 20100201 | ☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit | N/A | N/A | | CAI-I | Wicroturome | Capsione | 03K-11G4-BC00 | 9020 | OJ KW | 67.2 np | 12/1/2017 | CAP-1 | 20100201 | ☐ To Be Modified ☐ To be Replaced | IN/A | IN/A | | CAP-2 | Microturbine | Capstone | 65R-HG4-BU00 | 9621 | 65 kW | 87.2 hp | 11/20/2017 | N/A | 20100201 | ☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit | N/A | N/A | | CAF-2 | Microturome | Capsione | 03K-HG4-BU00 | 9021 | OJ KW | 87.2 np | 12/1/2017 | CAP-2 | 20100201 | ☐ To Be Modified ☐ To be Replaced | N/A | IN/A | | Dehy-1 | Dehydrator Still Vent/ | Latoka | N/A | 4140-02 | 25 | 25 | 1/1/1981 | N/A | 31000304 | ☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit | N/A | N/A | | Deny-1 | Flash Tank | Latoka | IN/A | 4140-02 | MMscf/d | MMscf/d | 1/1/1981 | N/A | 31000304 | ✓ To Be Modified ☐ To be Replaced | N/A | IN/A | | TK-1 | Condensate Tank | N/A | 115238 | 595 | 300 bbl | 300 bbl | 2009 | N/A | 40400311 | ☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit | N/A | N/A | | 1 K-1 | Condensate Tank | N/A | 113236 | 393 | 300 001 | 300 001 | 2009 | N/A | 40400311 | ✓ To Be Modified ☐ To be Replaced | N/A | IN/A | | TK-2 | Condensate Tank | N/A | 115239 | 4585 | 300 bbl | 300 bbl | 2009 | N/A | 40400311 | ☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit | N/A | N/A | | 1 K-2 | Condensate Tank | N/A | 113239 | 4363 | 300 001 | 300 001 | 2009 | N/A | 40400311 | ✓ To Be Modified ☐ To be Replaced | N/A | IN/A | | FUG | Facility-wide Fugitive | N/A 31000220 | □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit | N/A | N/A | | FUG | Emissions | IN/A | IN/A | IN/A | IN/A | IN/A | N/A | N/A | 31000220 | ☐ To Be Modified ☐ To be Replaced | IN/A | IN/A | | CC) (A) | Startup, Shutdown, and | 27/4 | 27/4 | 27/4 | 27/4 | 27/4 | N/A | N/A | 210000011 | ☐ Existing (unchanged) ☐ To be Removed | 27/4 | 27/4 | | SSM/M | Maintenance and
Malfunction emissions | N/A 310888811 | ✓ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced | N/A | N/A | | I I I a it a a a a a b | Malfunction emissions | -b ! 4b ! | 4 | | | | | N/A | | ☐ To Be Modified ☐ To be Replaced | | | Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided. ² Specify dates required to determine regulatory applicability. ³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set. ^{4&}quot;4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition ### **Table 2-B:** Insignificant Activities (20.2.70 NMAC) **OR** Exempted Equipment (20.2.72 NMAC) All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form. | Unit Number | Source Description | Manufacturer | Model No. | Max Capacity | List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5) | Date of
Manufacture
/Reconstruction ² | For Each Piece of Equipment, Check Onc | |-------------|---|--------------|------------|----------------|---|--|---| | Olit Number | Source Description | Manufacturei | Serial No. | Capacity Units | Insignificant Activity citation (e.g. IA List
Item #1.a) | Date of Installation
/Construction ² | For Each Fleet of Equipment, Check One | | Rebl-1 | Reboiler | Thermoflux | N/A | 1.0 | 20.2.72.202.B.5 NMAC | 1981 | ☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit | | Keoi-i | Reboliei | Thermonux
 4140-02 | MMBtu/hr | IA List Item #1.a | 1981 | ☐ To Be Modified ☐ To be Replaced | | Load | Loading Emissions from | N/A | N/A | N/A | 20.2.72.202.B.5 NMAC | N/A | ☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit | | Loau | Condensate Tanks | IV/A | N/A | N/A | IA List Item #1.a | N/A | ☐ To Be Modified ☐ To be Replaced | | NGL Load | Loading Emissions from NGL | N/A | N/A | N/A | 20.2.72.202.B.5 NMAC | N/A | ☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit | | NGL Loau | Tank | IV/A | N/A | N/A | IA List Item #1.a | N/A | ☐ NewAdditional ☐ Replacement Onlt ☐ To Be Modified ☐ To be Replaced | | Hanl | Hanarad Haul Dand Emissions | NI/A | N/A | N/A | 20.2.72.202.B.5 NMAC | N/A | □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit | | Haul | Unpaved Haul Road Emissions | N/A | N/A | N/A | IA List Item #1.a | N/A | ✓ New/Additional☐ Replacement Unit☐ To Be Modified☐ To be Replaced | | T. 1 | I I 0'10; T 1 | 21/4 | N/A | 1500 | 20.2.72.202.B.2 NMAC | N/A | ☑ Existing (unchanged) ☐ To be Removed | | T-1 | Lube Oil Storage Tank | N/A | N/A | gal | IA List Item #5 | N/A | ☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced | | T. 2 | A 11: 10: T 1 | 27/4 | N/A | 1500 | 20.2.72.202.B.2 NMAC | N/A | ☑ Existing (unchanged) ☐ To be Removed | | T-2 | Ambitrol Storage Tank | N/A | N/A | gal | IA List Item #5 | N/A | ☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced | | T. 2 | CI IO TI | 27/4 | N/A | 1500 | 20.2.72.202.B.2 NMAC | N/A | ☑ Existing (unchanged) ☐ To be Removed | | T-3 | Glycol Storage Tank | N/A | N/A | gal | IA List Item #5 | N/A | ☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced | | T. 4 | 0.1 M + M + | 27/4 | N/A | 50 | 20.2.72.202.B.2 NMAC | N/A | ☑ Existing (unchanged) ☐ To be Removed | | T-4 | Oily Waste Water | N/A | N/A | bbl | IA List Item #5 | N/A | ☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced | | T. 5 | II II I O'I G. T. I | 27/4 | N/A | 50 | 20.2.72.202.B.2 NMAC | N/A | ☑ Existing (unchanged) ☐ To be Removed | | T-5 | Used Lube Oil Storage Tank | N/A | N/A | bbl | IA List Item #5 | N/A | ☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced | | HRU | H.I. D. H. | 27/4 | N/A | 2 | 20.2.72.202.B.5 NMAC | 2017 | ☑ Existing (unchanged) ☐ To be Removed | | HKU | Helium Recovery Unit | N/A | N/A | MMscf/day | IA List Item #1.a | 2017 | ☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced | | NIDII 1 | Five Nitrogen Rejection Units (2 | 27/4 | N/A | 10 | 20.2.72.202.B.5 NMAC | N/A | ☑ Existing (unchanged) ☐ To be Removed | | NRU-1 | Five Nitrogen Rejection Units (
MMscf/d capacity each) | N/A | N/A | MMscf/day | IA List Item #1.a | N/A | ☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced | | | | | | | | | ☐ Existing (unchanged) ☐ To be Removed | | | | | | | | | ☐ New/Additional ☐ Replacement Unit ☐ To Be Modified ☐ To be Replaced | | | | | | | | | ☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit | | | | | | | | | ☐ To Be Modified ☐ To be Replaced | ¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested. ² Specify date(s) required to determine regulatory applicability. ### **Table 2-C: Emissions Control Equipment** Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. | Control Equipment Unit No. | Control Equipment Description | Date Installed | Controlled Pollutant(s) | Controlling Emissions for Unit
Number(s) ¹ | Efficiency
(% Control by
Weight) | Method used to
Estimate
Efficiency | |----------------------------|---|--------------------------|-------------------------------|--|---|--| | C-867 | NSCR Catalyst and AFR | 12/24/2004 | NO _X , CO, and VOC | C-867 | NO _X 80%; CO
80%; VOC 88% | catalyst
manafacturer | | C-868 | NSCR Catalyst and AFR | 12/6/2004 | NO _X , CO, and VOC | C-868 | NO _X 80%; CO
80%; VOC 88% | catalyst
manafacturer | | C-320 | NSCR Catalyst | 2019 | NO _X , CO, and VOC | C-320 | NO _X 95%; CO
95%; VOC 79% | catalyst
manafacturer | | C-1 | Condenser | 1/1/1981 | HAPs and VOCs | Dehy-1 | VOCs and HAPs
90% | Engineering
Estimate | 1 List each control d | evice on a separate line. For each control device, list a | all emission units contr | rolled by the control device | | | | Form Revision: 7/8/2011 Table 2-C: Page 1 Printed 6/15/2021 2:28 PM ### **Table 2-D:** Maximum Emissions (under normal operating conditions) #### ☐ This Table was intentionally left blank because it would be identical to Table 2-E. Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-1. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4). | Unit No. | NO | Ox | C | O | VO | С | SC |)x | P | M^1 | PM | $[10^{1}]$ | PM | 2.51 | Н | $_{2}S$ | Le | ead | |--------------------|-------|--------|-------|--------|----------|--------|----------|----------|----------|----------|----------|------------|----------|----------|-------|---------|-------|--------| | Unit No. | lb/hr | ton/yr | C-865 ² | 4.43 | 19.40 | 5.58 | 24.50 | 1.36 | 5.95 | < | > | 0.070 | 0.32 | 0.070 | 0.32 | 0.070 | 0.32 | < | < | - | - | | C-867 | 29.97 | 131.26 | 20.75 | 90.87 | 0.69 | 3.03 | 0.11 | 0.46 | 0.066 | 0.29 | 0.066 | 0.29 | 0.066 | 0.29 | - | - | - | - | | C-868 | 25.50 | 111.68 | 17.65 | 77.32 | 0.59 | 2.58 | 0.090 | 0.40 | 0.066 | 0.29 | 0.066 | 0.29 | 0.066 | 0.29 | - | - | - | - | | C-878 ² | 11.80 | 51.80 | 7.19 | 31.10 | 1.80 | 7.80 | 0.48 | 2.10 | 0.060 | 0.25 | 0.060 | 0.25 | 0.060 | 0.25 | < | < | - | - | | $C-880^2$ | 4.43 | 19.40 | 5.58 | 24.50 | 1.36 | 5.95 | < | < | 0.070 | 0.32 | 0.070 | 0.32 | 0.070 | 0.32 | < | < | - | - | | C-320 | 13.19 | 57.76 | 13.19 | 57.76 | 0.46 | 2.03 | 3.02E-03 | 0.013 | 0.044 | 0.19 | 0.044 | 0.19 | 0.044 | 0.19 | - | - | - | - | | TK-1 | - | - | - | - | 1.54 | 6.72 | - | - | - | - | - | - | - | - | - | - | - | - | | TK-2 | - | - | - | - | 1.54 | 6.72 | - | | - | - | - | - | - | - | - | - | - | - | | CAP-1 ² | 0.031 | 0.13 | 0.081 | 0.35 | 6.50E-03 | 0.029 | 5.22E-04 | 2.30E-03 | 5.20E-06 | 2.30E-05 | 5.20E-06 | 2.30E-05 | 5.22E-06 | 2.30E-05 | < | < | - | - | | CAP-2 ² | 0.031 | 0.13 | 0.081 | 0.35 | 6.50E-03 | 0.029 | 5.22E-04 | 2.30E-03 | 5.20E-06 | 2.30E-05 | 5.20E-06 | 2.30E-05 | 5.22E-06 | 2.30E-05 | < | < | - | - | | FUG | - | - | - | - | 1.30 | 5.68 | - | - | - | - | - | - | - | - | - | - | - | - | | Dehy-1 | - | - | - | - | 9.06 | 39.70 | - | - | - | - | - | - | - | - | - | - | - | - | Totals | 89.37 | 391.56 | 70.10 | 306.75 | 19.71 | 86.23 | 0.68 | 2.98 | 0.38 | 1.66 | 0.38 | 1.66 | 0.38 | 1.66 | - | - | - | - | ¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC). ² Units C-865, C-878, and C-880 emissions are representative of NSR permit 412-M3R3. Units CAP-1 and CAP-2 emissions are representative of NSR 412-M3R5. [&]quot;<" representative of permit P073-R3M2. [&]quot;-" indicates emissions of this pollutant are not expected. ### **Table 2-E: Requested Allowable Emissions** Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴). | Unit No. | NO | Ox | C | 0 | VOC | C | SO | Ox | P | M^1 | PM | 10 ¹ | PM | 2.51 | Н | ₂ S | Le | ead | |--------------------|-------|--------|-------|--------|----------|--------|----------|----------|----------|----------|----------|-----------------|----------|----------|-------
----------------|-------|--------| | Onit No. | lb/hr | ton/yr | C-865 ² | 4.43 | 19.40 | 5.58 | 24.50 | 1.36 | 5.95 | < | < | 0.070 | 0.32 | 0.070 | 0.32 | 0.070 | 0.32 | < | < | - | - | | C-867 | 5.48 | 23.99 | 2.32 | 10.18 | 0.35 | 1.51 | 0.11 | 0.46 | 0.066 | 0.29 | 0.066 | 0.29 | 0.066 | 0.29 | - | - | - | - | | C-868 | 0.45 | 1.96 | 1.86 | 8.14 | 0.29 | 1.29 | 0.090 | 0.40 | 0.066 | 0.29 | 0.066 | 0.29 | 0.066 | 0.29 | - | - | - | - | | C-878 ² | 11.80 | 51.80 | 7.19 | 31.10 | 1.80 | 7.80 | 0.48 | 2.10 | 0.060 | 0.25 | 0.060 | 0.25 | 0.060 | 0.25 | < | < | - | - | | $C-880^2$ | 4.43 | 19.40 | 5.58 | 24.50 | 1.36 | 5.95 | < | < | 0.070 | 0.32 | 0.070 | 0.32 | 0.070 | 0.32 | < | < | - | - | | C-320 | 0.66 | 2.90 | 0.66 | 2.90 | 0.097 | 0.43 | 3.02E-03 | 0.013 | 0.044 | 0.19 | 0.044 | 0.19 | 0.044 | 0.19 | - | - | - | - | | TK-1 | - | - | - | - | 1.54 | 6.72 | - | - | - | - | - | - | - | - | - | - | - | - | | TK-2 | - | - | - | - | 1.54 | 6.72 | - | - | - | - | - | - | - | - | - | - | - | - | | CAP-1 ² | 0.031 | 0.13 | 0.081 | 0.35 | 6.50E-03 | 0.029 | 5.22E-04 | 2.30E-03 | 5.20E-06 | 2.30E-05 | 5.20E-06 | 2.30E-05 | 5.22E-06 | 2.30E-05 | < | < | - | - | | CAP-2 ² | 0.031 | 0.13 | 0.081 | 0.35 | 6.50E-03 | 0.029 | 5.22E-04 | 2.30E-03 | 5.20E-06 | 2.30E-05 | 5.20E-06 | 2.30E-05 | 5.22E-06 | 2.30E-05 | < | < | ı | - | | FUG | - | - | - | - | 1.30 | 5.68 | - | - | - | - | - | 1 | - | - | - | - | - | - | | Dehy-1 | - | - | - | - | 9.06 | 39.70 | - | - | - | - | - | - | - | - | - | - | - | - | | | | | · | | | | · | | | | · | • | | | | | Totals | 27.31 | 119.71 | 23.36 | 102.02 | 18.70 | 81.82 | 0.68 | 2.98 | 0.38 | 1.66 | 0.38 | 1.66 | 0.38 | 1.66 | - | - | - | - | ¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC). ² Units C-865, C-878, and C-880 emissions are representative of TV permit P073-R3M2. Units CAP-1 and CAP-2 are representative of NSR 412-M3R5. [&]quot;<" representative of permit P073-R3M2. [&]quot;-" indicates emissions of this pollutant are not expected. ### Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM) ☐ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a. All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4). | Linit No | | Ox | | O | | OC | | Ox | | M^2 | | 110^2 | | 2.5^2 | | ₂ S | Le | ead | |----------|-------|--------|-------|----------|-------|--------|-------|--------|-------|--------|-------|---------|-------|---------|-------|----------------|-------|--------| | Unit No. | lb/hr | ton/yr | SSM/M | - | - | - | - | * | 10.00 | 1 | - | - | - | - | - | - | - | - | - | - | - | Totals | - | - | - | - | * | 10.00 | - | - | - | - | - | - | - | - | - | - | - | - | ¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below. ² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC). [&]quot;*" Indicates that an hourly limit is not appropriate for this operating situation and is not being requested. [&]quot;-" Denotes emissions of this pollutant are not expected. ### Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks ☑ I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E. Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures. | | Serving Unit | N | Ox | C | 0 | V | ЭС | SO | Ox | P | M | PM | 110 | PM | 12.5 | □ H ₂ S or | r 🗆 Lead | |-----------|-----------------------------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-----------------------|----------| | Stack No. | Number(s) from
Table 2-A | lb/hr | ton/yr | Totals: | | | | | | | | | | | | | | | | | ### **Table 2-H: Stack Exit Conditions** Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here: | Stack | Serving Unit Number(s) | Orientation | Rain Caps | Height Above | Temp. | Flow | Rate | Moisture by | Velocity | Inside | |--------|------------------------|------------------------------|-------------|--------------|-------|--------|---------|---------------|----------|---------------| | Number | from Table 2-A | (H-Horizontal
V=Vertical) | (Yes or No) | Ground (ft) | (F) | (acfs) | (dscfs) | Volume
(%) | (ft/sec) | Diameter (ft) | | C-865 | C-865 | V | No | 24 | 225 | 32.0 | - | - | 40.8 | 1.00 | | C-867 | C-867 | V | No | 40 | 1060 | 16.4 | - | - | 30.3 | 0.83 | | C-868 | C-868 | V | No | 40 | 1060 | 16.4 | - | - | 30.3 | 0.83 | | C-878 | C-878 | V | No | 40 | 960 | 40.1 | - | - | 42.2 | 1.10 | | C-880 | C-880 | V | No | 24 | 255 | 32.0 | - | - | 40.8 | 1.00 | | C-320 | C-320 | V | No | 18 | 1042 | 42.7 | - | - | 54.3 | 1.00 | | CAP-1 | CAP-1 | V | No | 15 | 588 | 9.0 | - | - | 11.5 | 1.00 | | CAP-2 | CAP-2 | V | No | 15 | 588 | 9.0 | - | - | 11.5 | 1.00 | ### Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year
For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figures than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it is in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above. | Stack No. | Unit No.(s) | Total H | IAPs | Formalde | | n-He
☑ HAP o | | - | zene
or 🗆 TAP | - | uene
or 🗆 TAP | | enes
or 🗆 TAP | Provide Name | | Provide l
Name | Here | Provide l
Name | | |-----------|-------------|----------|--------|----------|--------|-----------------|----------|----------|------------------|----------|------------------|----------|------------------|--------------|--------|-------------------|--------|-------------------|--------| | | | lb/hr | ton/yr | C-865 | C-865 | 0.44 | 1.92 | 0.28 | 1.23 | - | - | - | - | - | - | - | - | | | | | | | | C-867 | C-867 | 0.80 | 3.51 | 0.16 | 0.70 | - | - | 0.012 | 0.054 | 4.35E-03 | 0.019 | 1.52E-03 | 6.66E-03 | | | | | | | | C-868 | C-868 | 0.68 | 2.99 | 0.14 | 0.60 | - | - | 0.010 | 0.046 | 3.70E-03 | 0.016 | 1.29E-03 | 5.67E-03 | | | | | | | | C-878 | C-878 | 0.37 | 1.63 | 0.24 | 1.05 | - | 1 | - | - | - | - | - | - | | | | | | | | C-880 | C-880 | 0.44 | 1.92 | 0.28 | 1.23 | - | - | - | - | - | - | - | - | | | | | | | | C-320 | C-320 | 0.13 | 0.58 | 0.093 | 0.41 | - | - | - | - | - | - | - | - | | | | | | | | N/A | TK-1 | 0.12 | 0.53 | - | - | 0.11 | 0.49 | 6.66E-03 | 0.029 | 1.91E-03 | 8.38E-03 | - | - | | | | | | | | N/A | TK-2 | 0.12 | 0.53 | - | - | 0.11 | 0.49 | 6.66E-03 | 0.029 | 1.91E-03 | 8.38E-03 | - | - | | | | | | | | CAP-1 | CAP-1 | 8.00E-03 | 0.035 | 3.20E-03 | 0.014 | 2.97E-04 | 1.30E-03 | 1.14E-04 | 5.00E-04 | 6.85E-05 | 3.00E-04 | 2.28E-04 | 1.00E-03 | | | | | | | | CAP-2 | CAP-2 | 8.00E-03 | 0.035 | 3.20E-03 | 0.014 | 2.97E-04 | 1.30E-03 | 1.14E-04 | 5.00E-04 | 6.85E-05 | 3.00E-04 | 2.28E-04 | 1.00E-03 | | | | | | | | N/A | FUG | 0.053 | 0.23 | - | - | - | - | - | - | - | - | - | - | | | | | | | | N/A | SSM | - | - | - | - | - | - | - | - | - | - | - | - | | | | | | | | N/A | Dehy-1 | 0.63 | 2.74 | - | - | 0.58 | 2.54 | - | - | 6.20E-03 | 0.027 | 0.024 | 0.11 | - | | - | Tot | als: | 3.80 | 16.66 | 1.20 | 5.25 | 0.80 | 3.52 | 0.036 | 0.16 | 0.018 | 0.080 | 0.028 | 0.12 | | | | | | | Table 2-J: Fuel Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package. | | Fuel Type (low sulfur Diesel, | Fuel Source: purchased commercial, | | Speci | fy Units | | | |----------|---|--|---------------------|--------------|--------------|----------------------|-------| | Unit No. | ultra low sulfur diesel,
Natural Gas, Coal,) | pipeline quality natural gas, residue
gas, raw/field natural gas, process gas
(e.g. SRU tail gas) or other | Lower Heating Value | Hourly Usage | Annual Usage | % Sulfur | % Ash | | C-865 | Natural Gas | Pipeline quality natural gas | 1050 Btu/scf | 9.5 Mscf | 83.3 MMscf | 0.25 gr S/100
scf | , | | C-867 | Natural Gas | Pipeline quality natural gas | 1050 Btu/scf | 7.43 Mscf | 65.06 MMscf | 0.25 gr S/100
scf | ı | | C-868 | Natural Gas | Pipeline quality natural gas | 1050 Btu/scf | 6.32 Mscf | 55.36 MMscf | 0.25 gr S/100
scf | ı | | C-878 | Natural Gas | Pipeline quality natural gas | 1050 Btu/scf | 8.1 Mscf | 71.0 MMscf | 0.25 gr S/100
scf | 1 | | C-880 | Natural Gas | Pipeline quality natural gas | 1050 Btu/scf | 9.5 Mscf | 83.6 MMscf | 0.25 gr S/100
scf | 1 | | C-320 | Natural Gas | Pipeline quality natural gas | 1050 Btu/scf | 4.2 Mscf | 37.0 MMscf | 0.25 gr S/100
scf | 1 | | CAP-1 | Natural Gas | Pipeline quality natural gas | 1050 Btu/scf | 0.8 Mscf | 6.7 MMscf | 0.25 gr S/100
scf | - | | CAP-2 | Natural Gas | Pipeline quality natural gas | 1050 Btu/scf | 0.8 Mscf | 6.7 MMscf | 0.25 gr S/100
scf | - | ### Table 2-K: Liquid Data for Tanks Listed in Table 2-L For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package. | | | | | | Vapor | Average Stor | age Conditions | Max Storag | ge Conditions | |----------|-------------|---------------|-------------|-------------------------------|------------------------------------|---------------------|----------------------------------|---------------------|----------------------------------| | Tank No. | SCC
Code | Material Name | Composition | Liquid
Density
(lb/gal) | Molecular
Weight
(lb/lb*mol) | Temperature
(°F) | True Vapor
Pressure
(psia) | Temperature
(°F) | True Vapor
Pressure
(psia) | | TK-1 | 40400311 | Condensate | Condensate | 32.7 | 68.0 | 70 | 14.7 | 70 | 14.7 | | TK-2 | 40400311 | Condensate | Condensate | 32.7 | 68.0 | 70 | 14.7 | 70 | 14.7 | Form Revision: 7/8/2011 Table 2-K: Page 1 Printed 6/15/2021 2:28 PM ### Table 2-L: Tank Data Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M = 42.0 gal | Tank No. | Date
Installed | Materials Stored | Seal Type
(refer to Table 2-
LR below) | Roof Type
(refer to Table 2-
LR below) | Сар | acity | Diameter
(M) | Vapor
Space | Co
(from Ta | blor
ble VI-C) | Paint Condition (from Table | Annual
Throughput | Turn-
overs | |----------|-------------------|------------------|--|--|-------|---------|-----------------|----------------|----------------|--------------------------|-----------------------------|----------------------|----------------| | | | | LK below) | LK below) | (bbl) | (M^3) | | (M) | Roof | Shell | VI-C) | (gal/yr) | (per year) | | TK-1 | 2009 | Condensate | FX | NA | 300 | 29.5 | 3.66 | 3.66 | WH | WH | Good | 15,330 | 1.22 | | TK-2 | 2009 | Condensate | FX | NA | 300 | 29.5 | 3.66 | 3.66 | WH | WH | Good | 15,330 | 1.22 | Table 2-L2: Liquid Storage Tank Data Codes Reference Table | Roof Type | Seal Type, Wo | elded Tank Seal Type | Seal Type, Rive | eted Tank Seal Type | Roof, Shell Color | Paint
Condition | |----------------------------|---------------------------|-------------------------------|------------------------------|----------------------------------|-------------------------|--------------------| | FX: Fixed Roof | Mechanical Shoe Seal | Liquid-mounted resilient seal | Vapor-mounted resilient seal | Seal Type | WH: White | Good | | IF: Internal Floating Roof | A: Primary only | A: Primary only | A: Primary only | A: Mechanical shoe, primary only | AS: Aluminum (specular) | Poor | | EF: External Floating Roof | B: Shoe-mounted
secondary | B: Weather shield | B: Weather shield | B: Shoe-mounted secondary | AD: Aluminum (diffuse) | | | P: Pressure | C: Rim-mounted secondary | C: Rim-mounted secondary | C: Rim-mounted secondary | C: Rim-mounted secondary | LG: Light Gray | | | | | | | | MG: Medium Gray | | | Note: 1.00 bbl = 0.159 N | BL: Black | | | | | | | | | | | | OT: Other (specify) | | Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.) | | Materi | al Processed | N | laterial Produced | | | | |-------------|----------------------|----------------------------------|--------------------------|-------------------|-------------------------|-------|--------------------------| | Description | Chemical Composition | Phase
(Gas, Liquid, or Solid) | Quantity (specify units) | Description | Chemical
Composition | Phase | Quantity (specify units) | | Natural Gas | Natural Gas | Gas | 25 MMscf/day | Natural Gas | Natural Gas | Gas | 25 MMscf/day | ### **Table 2-N: CEM Equipment** Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. | Stack No. | Pollutant(s) | Manufacturer | Model No. | Serial No. | Sample
Frequency | Averaging
Time | Range | Sensitivity | Accuracy | |-----------|--------------|--------------|-------------------------|----------------------|---------------------|-------------------|-------|-------------|----------| | | | ľ | N/A - The facility does | s not operate CEM Eq | uipment. | ### **Table 2-O: Parametric Emissions Measurement Equipment** Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. | Unit No. | Parameter/Pollutant Measured | Location of Measurement | Unit of Measure | Acceptable Range | Frequency of Maintenance | Nature of
Maintenance | Method of
Recording | Averaging
Time | |----------|-------------------------------|-------------------------|-----------------|------------------|--------------------------|--------------------------|------------------------|-------------------| | C-867 | Catalyst Inlet O ₂ | Inlet to catalyst | V | 0.5 to 1.0 | as needed | replacement | Electronic | N/A | | C-867 | Catalyst Inlet Temperature | Inlet to catalyst | F | 550°F to 1300°F | as needed | replacement | Electronic | N/A | | C-868 | Catalyst Inlet O ₂ | Inlet to catalyst | V | 0.5 to 1.0 | as needed | replacement | Electronic | N/A | | C-868 | Catalyst Inlet Temperature | Inlet to catalyst | F | 550°F to 1300°F | as needed | replacement | Electronic | N/A | ### **Table 2-P: Greenhouse Gas Emissions** Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year. | | | CO ₂ ton/yr | N ₂ O
ton/yr | CH ₄
ton/yr | SF ₆
ton/yr | PFC/HFC ton/yr² | | | | | Total GHG
Mass Basis
ton/yr ⁴ | Total CO ₂ e ton/yr ⁵ | |----------|-------------------------------|------------------------|----------------------------|---------------------------|---------------------------|-----------------|--|--|--|--|--|--| | Unit No. | GWPs 1 | 1 | 298 | 25 | 22,800 | footnote 3 | | | | | | | | C-865 | mass GHG | 5125.00 | 0.0097 | 0.097 | | | | | | | 5125.11 | | | | CO ₂ e | 5125.00 | 2.89 | 2.43 | | | | | | | | 5130.32 | | C-867 | mass GHG | 3995.54 | 0.0075 | 0.075 | | | | | | | 3995.6225 | | | | CO ₂ e | 3995.54 | 2.24 | 1.88 | | | | | | | | 3999.65 | | C-868 | mass GHG | 3399.55 | 0.0064 | 0.064 | | | | | | | 3399.62 | | | | CO ₂ e | 3399.55 | 1.91 | 1.60 | | | | | | | | 3403.06 | | C-878 | mass GHG | 4156.00 | 0.0078 | 0.078 | | | | | | | 4156.09 | | | | CO ₂ e | 4156.00 | 2.32 | 1.95 | | | | | | | | 4160.27 | | C-880 | mass GHG | 5125.00 | 0.0097 | 0.097 | | | | | | | 5125.11 | 5120.22 | | | CO ₂ e | 5125.00 | 2.89 | 2.43 | | | | | | | 227102 | 5130.32 | | C-320 | mass GHG | 2274.88 | 0.0043 | 0.043 | | | | | | | 2274.93 | 2277.22 | | | CO ₂ e | 2274.88 | 1.28 | 1.08 | | | | | | | 202.21 | 2277.23 | | CAP-1 | mass GHG | 392.20 | 0.00074 | 0.0074 | | | | | | | 392.21 | 202.61 | | | CO ₂ e | 392.20 | 0.22 | 0.19 | | | | | | | 202.21 | 392.61 | | CAP-2 | mass GHG | 392.20 | 0.00074 | 0.0074 | | | | | | | 392.21 | 202.61 | | | CO ₂ e | 392.20 | 0.22 | 0.19 | | | | | | | 510.07 | 392.61 | | Dehy-1 | mass GHG | 512.36 | 0.0010 | 0.010 | | | | | | | 512.37 | 512.01 | | | CO ₂ e | 512.36 | 0.30 | 0.25 | | | | | | | 14.04 | 512.91 | | FUG | mass GHG | 0.014 | - | 14.83 | | | | | | | 14.84 | 370.76 | | | CO ₂ e
mass GHG | 0.014 | - | 370.75 | | | | | | | | 3/0./6 | | | CO ₂ e | | | | | | | | | | | | | | mass GHG | | | | | | | | | | | | | | CO ₂ e | | | | | | | | | | | | | | mass GHG | | | | | | | | | | | | | | CO2e | | | | | | | | | | | | | | mass GHG | 25372.74 | 0.048 | 15.31 | | | | | | | 25,388.10 | | | Total | CO ₂ e | 25372.74 | 14.27 | 382.72 | | | | | | | 20,000.10 | 25,769.73 | TGWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values. ² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound. ³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98. ⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP. ⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP. # **Application Summary** The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V). The **Process Summary** shall include a brief description of the facility and its processes. Startup, Shutdown, and Maintenance (SSM) routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions. IACX Roswell LLC is submitting this application pursuant to 20.2.70.404.C.1.a NMAC for a Significant Modification to Title IACX Roswell LLC is submitting this application pursuant to 20.2.70.404.C.1.a NMAC for a Significant Modification to Title V permit P073-R3M2 for the Red Bluff No. 3 Compressor Station. The facility is located approximately 23 miles northeast of Roswell in Chaves County, New Mexico. The Red Bluff No. 3 Compressor Station is an extension of a local gas transportation system that gathers casinghead gas from multiple wells in the area. The facility compresses the gas for delivery to a main line. The proposed modification seeks to incorporate the changes made to the facility in the application for NSR permit 0412-M4,
including the following: Revisions to the emissions for the glycol dehydrator (Unit Dehy-1); condensate tanks (Units TK-1 and TK-2); startup, shutdown, maintenance, and malfunction (Unit SSM/M); facility-wide fugitives (Unit FUG); and two RICE engines (Units C-867 and C-868). Revisions were also made to the following exempt emission sources: truck loadout from the condensate tanks (Unit Load); NGL loadout (Unit NGL Load); and unpaved haul road activities (Unit Haul). This application is submitted in response to the Notice of Violation (NOV) (Track No. IACX-0019-1901) issued on July 29, 2019. This Title V Modification is the final corrective action for Violation 1 in the NOV and is submitted within 12-months of issuance of NSR permit 0412-M4. Equipment currently authorized at the site includes the following: - Two (2) Caterpillar G3516 compressor engines (Units C-865 and C-880); - Two (2) Waukesha L7042GSI compressor engines (Units C-867 and C-868); - One (1) Superior 8GTLA compressor engine (Unit C-878); - One (1) rinse compressor engine (Unit C-320); - Two (2) Capstone C65 microturbines (Units CAP-1 and CAP-2); - One glycol dehydration contactor (unit Dehy-1); and - Two (2) condensate storage tanks (Units TK-1 and TK-2); Additional emissions at the facility result from startup, shutdown, maintenance, and malfunction (Unit SSM/M) and facility-wide fugitive component emissions (FUG). The following insignificant activities and equipment are located at Red Bluff No. 3: - One (1) glycol dehydration unit reboiler (Unit Rebl-1); - Five (5) nitrogen rejection units (Unit NRU-1); - One (1) helium recovery unit (Unit HRU). - Five (5) miscellaneous storage tanks for lube oil, glycol, etc. (Units T-1 through T-5); - Loadout emissions from truck loadout of condensate and NGL (Units Load and NGL Load); and - Unpaved haul road emissions (Unit Haul). # **Process Flow Sheet** | A process flow sheet | and/or block diagram indicating the individual equipment, all emission points and types of contr | ol | |--------------------------|--|----| | applied to those points. | . The unit numbering system should be consistent throughout this application. | | A process flow diagram is attached. # **Plot Plan Drawn To Scale** | A plot plan drawn to scale showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under | |---| | direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The | | unit numbering system should be consistent throughout this application. | A plot plan is attached. Form-Section 5 last revised: 8/15/2011 Section 5, Page 1 Saved Date: 6/16/2021 ### **All Calculations** Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section. Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation. SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements. **Glycol Dehydrator Calculations**: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used. Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for: - 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy. - 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day. ### **Significant Figures:** - A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures. - **B.** At least 5 significant figures shall be retained in all intermediate calculations. - C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used: - (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed; - (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and - (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number. - (4) The final result of the calculation shall be expressed in the units of the standard. **Control Devices:** In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device Form-Section 6 last revised: 5/3/16 Section 6, Page 1 Saved Date: 6/17/2021 regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants. _____ ### Compressor Engines (Units C-867 and C-868) The emission rates for NO_X and CO were calculated using emissions factors from the most recent stack test with a 20% safety factor included. Emissions for VOCs were calculated using emission factors from the catalyst manufacturer data (Johnson & Matthey). SO_2 emissions were calculated based on the pipeline quality natural gas sulfur content of 5 gr/100 scf. Emission rates for particulate matter were calculated using emission factors from AP-42 Table 1.4-2 and hazardous air pollutants (HAPs) were calculated using emission factors from AP-42 Table 3.2-3. Greenhouse gas emissions were calculated using manufacturer fuel usage and emission factors from 40 CFR 98 Tables C-1 and C-2 for natural gas. Global warming potentials were taken from 40 CFR 98 Table A-1. ### Compressor Engines (Units C-865 and C-880) Natural gas combustion in internal combustion compressor engines is considered to generate emissions of nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compounds (VOC) - which include several HAPs. Maximum emissions from the compressor engine are calculated based on emission factors provided by the manufacturers. All emission values listed in the application forms for the engines corresponds to 100% load at maximum engine speed. Estimated HAP emissions from the compressor engines are
calculated based on GRI-HapCalc 3.0. Maximum hourly and annual NOx, CO, and VOC emissions are calculated below. Copies of the specification sheets and emission factors provided by the manufacturers were previously submitted to the Bureau and will not change. #### **Compressor Engines (Units C-878)** Natural gas combustion in internal combustion compressor engines is considered to generate emissions of nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compounds (VOC) - which include several HAPs. Maximum emissions from the compressor engine are calculated based on emission factors provided by the manufacturers. All emission values listed in the application forms for the engines corresponds to 100% load at maximum engine speed. Estimated HAP emissions from the compressor engines are calculated based on GRI-HapCalc 3.0. Maximum hourly and annual NOx, CO, and VOC emissions are calculated below. Copies of the specification sheets and emission factors provided by the manufacturers were previously submitted to the Bureau and will not change. #### **Compressor Engines (Units C-320)** The emission rates for NO_X, CO, and VOC were calculated using emission factors from the catalyst manufacturer data. The emission rate for SO_X was calculated using the default fuel sulfur content from the AECTool of 0.025 grains total sulfur per scf. Emission rates for particulate matter and hazardous air pollutants (HAPs) were calculated using emission factors from AP-42 Table 3.2-2. Greenhouse gas emissions were calculated using manufacturer fuel usage and emission factors from 40 CFR 98 Tables C-1 and C-2 for natural gas. Global warming potentials were taken from 40 CFR 98 Table A-1. ### **Microturbines (Units CAP-1 & CAP-2)** Emissions of NO_X , CO, and VOC are calculated based on manufacturer data. Emissions of particulates are estimated using emission factors from AP-42 Table 3.1-2a. Emissions of SO_2 are based on fuel consumption and a fuel sulfur content of 2.5 grains total sulfur per Mscf fuel. GRI-HAPCalc was used to determine Total HAP and formaldehyde emissions. Greenhouse gas emissions were calculated based on emission factors from Tables C-1 and C-2 of 40 CFR Part 98. ### **Glycol Dehydrator Reboiler (Insignificant Unit Reboil-1)** The facility will be equipped with one external combustion sources: a dehy reboiler with a maximum heat input of 1.0 MMBtu/hr. The combustion sources result in CO2, CH4, and N2O from combustion and will be calculated using Equation C-2a and Equation C-9a from Subpart C of 40 CFR 98. The fuel records for this facility are not specific to the engine but rather the sum of the fuel used by the engine. Subpart C reporting allows like type units to be grouped together for emissions reporting. #### **Helium Recovery Unit (Insignificant Unit HRU)** Emissions from the HRU were estimated based on a representative feed analysis and the gas flow rate. The helium recovery unit will recover 97% of the helium and 3% of the N2 in the gas stream. This calculation of total VOC vented does not account for the recovered helium and N2 as they are not regulated pollutants. ### Nitrogen Rejection Unit (Insignificant Unit NRU) Emissions from the NRU were estimated based on a representative feed analysis and the gas flow rate. ### **Glycol Dehydrator (Unit Dehy-1)** The regenerator and flash tank emissions for Dehy-1 were calculated using GRI-GLYCalc. ### **Condensate Tanks (Units TK-1 and TK-2)** Flashing, working, and breathing emissions from the tanks were calculated using BR&E ProMax. #### Truck Loadout from Condensate Tanks (Insignificant Unit Load) Loading emissions from the condensate tanks were calculated using BR&E ProMax. The emissions are exempt pursuant to Insignificant List Item #1.a. ### **Unpaved Truck Hauling Emissions (Insignificant Unit Haul)** Unpaved haul road emissions are calculated using AP-42 13.2.2 Equations 1a and 2. This unit is exempt pursuant to Insignificant List Item #1.a. ### Truck Loadout from NGL bullet tank (Insignificant Unit NGL Load) Loading emissions from the NGL bullet tank were calculated using PV = nRT; where R = Universal Gas Constant 10.73 cubic feet *psi/lbmole * deg R. This unit's emissions are exempt pursuant to Insignificant List Item #1.a. #### **Facility-wide Fugitive Emissions (Unit FUG)** Fugitive emissions were calculated using component counts provided by facility engineers and emissions factors referenced from the "Protocol for Equipment Leak Emission Estimates" from the EPA (Table 2-4). A site-specific gas analysis was used to estimate composition. ### Startup, Shutdown, and Maintenance/Malfunction (Unit SSM/M) IACX is requesting 10 tpy VOC emissions associated with Startup, Shutdown and Maintenance (SSM) and Malfunction activities at the facility. There are two types of blowdown events: unit blowdowns and facility blowdowns. Unit blowdowns are typically associated with SSM activities because they are predictable, and they can be scheduled in most cases. Unit blowdowns occur each time a unit is taken offline for maintenance and/or during startup. Regularly scheduled blowdowns would occur every month for regularly scheduled maintenance. Units are usually offline for two hours or less during a normal preventative maintenance procedure. Facility blowdowns are emergency events that cannot be anticipated. These occur when the inlet valve must be shut due to unforeseen circumstances such as control valve failure. Facility shutdowns are rare and thus would not be considered SSM events, they are considered malfunctions. Based on the above description, IACX has determined to request a maximum VOC emission limit of 10 tons per year to account for Startup, Shutdown, and Maintenance/Malfunction (SSM/M). In accordance with "Implementation Guidance for permitting SSM Emissions and Excess Emission" document issued 7 June 2012, "Instead of permitting SSM and upset/malfunction emissions separately, the applicant may request that emissions from both SSM and upset/malfunction be consolidated in the permit with a total limit of 10 tons per year per pollutant per facility for the combined category to reduce concerns about the appropriateness of activities listed as SSM." # Section 6.a ### **Green House Gas Emissions** (Submitting under 20.2.70, 20.2.72 20.2.74 NMAC) Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆). ### **Calculating GHG Emissions:** - 1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility. - 2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 Mandatory Greenhouse Gas Reporting. - 3. Emissions from routine or predictable start up, shut down, and maintenance must be included. - **4.** Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **short** tons per year and represent each emission unit's Potential to Emit (PTE). - **5.** All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P. - **6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \square By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year. #### **Sources for Calculating GHG Emissions:** - Manufacturer's Data - AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html - EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/ - 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability. - API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version. - Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases: ### **Global Warming Potentials (GWP):** Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period. "Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a). #### **Metric to Short Ton Conversion:** Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 Mandatory Greenhouse Reporting requires metric tons. 1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98
– Units of Measure Conversions) ### IACX Roswell LLC - Red Bluff #3 Compressor Station Red Bluff No. 3 Compressor Station ### **Emissions Summary** Emission Units: All Description: Facility-wide emissions | | Uncontrolled Emissions ¹ | | | | | | | | | | | | | | | | | | |-----------|-------------------------------------|----------------|-------|--------|----------|-------|--------------------|----------|------------------|----------|----------|-------------------|----------|------------------|-------|------|----------|-------| | Unit No. | N | O _x | со | | vo | С | SO _X PM | | PM ₁₀ | | PN | PM _{2.5} | | H ₂ S | | HAPs | | | | Offic No. | lb/hr | tpy | C-865 | 4.43 | 19.4 | 5.58 | 24.5 | 1.36 | 5.95 | < | < | 0.070 | 0.32 | 0.070 | 0.32 | 0.070 | 0.32 | < | < | 0.44 | 1.92 | | C-867 | 29.97 | 131.26 | 20.75 | 90.9 | 0.69 | 3.03 | 0.11 | 0.46 | 0.066 | 0.29 | 0.066 | 0.29 | 0.066 | 0.29 | - | - | 0.80 | 3.51 | | C-868 | 25.50 | 111.68 | 17.65 | 77.3 | 0.59 | 2.58 | 0.090 | 0.40 | 0.066 | 0.29 | 0.066 | 0.29 | 0.066 | 0.29 | - | - | 0.68 | 2.99 | | C-878 | 11.8 | 51.8 | 7.19 | 31.1 | 1.8 | 7.8 | 0.48 | 2.1 | 0.060 | 0.25 | 0.060 | 0.25 | 0.060 | 0.25 | < | < | 0.37 | 1.63 | | C-880 | 4.43 | 19.4 | 5.58 | 24.5 | 1.36 | 5.95 | < | < | 0.070 | 0.32 | 0.070 | 0.32 | 0.070 | 0.32 | < | < | 0.44 | 1.92 | | C-320 | 13.2 | 57.8 | 13.2 | 57.8 | 0.46 | 2.03 | 3.02E-03 | 0.013 | 0.044 | 0.19 | 0.044 | 0.19 | 0.044 | 0.19 | - | - | 0.13 | 0.58 | | TK-1 | - | - | - | - | 1.54 | 6.72 | - | - | - | - | - | - | - | - | - | - | 0.12 | 0.53 | | TK-2 | - | - | - | - | 1.54 | 6.72 | - | - | - | - | - | - | - | - | - | - | 0.12 | 0.53 | | CAP-1 | 0.031 | 0.13 | 0.081 | 0.35 | 6.50E-03 | 0.029 | 5.22E-04 | 2.30E-03 | 5.20E-06 | 2.30E-05 | 5.20E-06 | 2.30E-05 | 5.22E-06 | 2.30E-05 | < | < | 8.00E-03 | 0.035 | | CAP-2 | 0.031 | 0.13 | 0.081 | 0.35 | 6.50E-03 | 0.029 | 5.22E-04 | 2.30E-03 | 5.20E-06 | 2.30E-05 | 5.20E-06 | 2.30E-05 | 5.22E-06 | 2.30E-05 | < | < | 8.00E-03 | 0.035 | | FUG | - | - | - | - | 1.30 | 5.68 | - | - | - | - | - | - | - | - | - | - | 0.053 | 0.23 | | SSM | - | - | - | - | * | 10.00 | - | - | - | - | - | - | - | - | - | - | - | - | | Dehy-1 | - | - | - | - | 9.06 | 39.70 | - | - | - | - | - | - | - | - | - | - | 0.63 | 2.74 | | Total | 89.37 | 391.56 | 70.10 | 306.75 | 19.71 | 96.23 | 0.68 | 2.98 | 0.38 | 1.66 | 0.38 | 1.66 | 0.38 | 1.66 | - | - | 3.80 | 16.66 | | | Controlled Emissions ² | | | | | | | | | | | | | | | | | | |-----------|-----------------------------------|----------------|-------|--------|----------|-------|----------|----------------|----------|----------|----------|------------------|-------------------|----------|-------|----------------|----------|-------| | Unit No. | N | O _x | С | 0 | vo | voc | | O _x | P | М | PN | /I ₁₀ | PM _{2.5} | | Н | ₂ S | НА | Ps | | Offic No. | lb/hr | tpy | C-865 | 4.43 | 19.4 | 5.58 | 24.5 | 1.36 | 5.95 | < | < | 0.070 | 0.32 | 0.070 | 0.32 | 0.070 | 0.32 | < | < | 0.44 | 1.92 | | C-867 | 5.48 | 23.99 | 2.32 | 10.18 | 0.35 | 1.51 | 0.11 | 0.46 | 0.066 | 0.29 | 0.066 | 0.29 | 0.066 | 0.29 | - | - | 0.80 | 3.51 | | C-868 | 0.45 | 1.96 | 1.86 | 8.14 | 0.29 | 1.29 | 0.090 | 0.40 | 0.066 | 0.29 | 0.066 | 0.29 | 0.066 | 0.29 | - | - | 0.68 | 2.99 | | C-878 | 11.8 | 51.8 | 7.19 | 31.1 | 1.8 | 7.8 | 0.48 | 2.1 | 0.060 | 0.25 | 0.060 | 0.25 | 0.060 | 0.25 | < | < | 0.37 | 1.63 | | C-880 | 4.43 | 19.4 | 5.58 | 24.5 | 1.36 | 5.95 | < | < | 0.070 | 0.32 | 0.070 | 0.32 | 0.070 | 0.32 | < | < | 0.44 | 1.92 | | C-320 | 0.66 | 2.90 | 0.66 | 2.90 | 0.097 | 0.43 | 3.02E-03 | 0.013 | 0.044 | 0.19 | 0.044 | 0.19 | 0.044 | 0.19 | - | - | 0.13 | 0.58 | | TK-1 | - | - | - | - | 1.54 | 6.72 | - | - | - | - | - | - | - | - | - | - | 0.12 | 0.53 | | TK-2 | - | - | - | - | 1.54 | 6.72 | - | - | - | - | - | - | - | - | - | - | 0.12 | 0.53 | | CAP-1 | 0.031 | 0.13 | 0.081 | 0.35 | 6.50E-03 | 0.029 | 5.22E-04 | 2.30E-03 | 5.20E-06 | 2.30E-05 | 5.20E-06 | 2.30E-05 | 5.22E-06 | 2.30E-05 | < | < | 8.00E-03 | 0.035 | | CAP-2 | 0.031 | 0.13 | 0.081 | 0.35 | 6.50E-03 | 0.029 | 5.22E-04 | 2.30E-03 | 5.20E-06 | 2.30E-05 | 5.20E-06 | 2.30E-05 | 5.22E-06 | 2.30E-05 | < | < | 8.00E-03 | 0.035 | | FUG | - | - | - | - | 1.30 | 5.68 | - | - | - | - | - | - | - | - | - | - | 0.053 | 0.23 | | SSM | - | - | - | - | * | 10.00 | - | - | - | - | - | - | - | - | - | - | - | - | | Dehy-1 | - | - | - | - | 9.06 | 39.70 | - | - | - | - | - | - | - | - | - | - | 0.63 | 2.74 | | Total | 27.31 | 119.71 | 23.36 | 102.02 | 18.70 | 91.82 | 0.68 | 2.98 | 0.38 | 1.66 | 0.38 | 1.66 | 0.38 | 1.66 | - | - | 3.80 | 16.66 | ¹ Units C-865, C-878, and C-880 emissions are representative of NSR permit 412-M3R3. Units CAP-1 and CAP-2 emissions are representative of NSR 412-M3R5. ² Units C-865, C-878, and C-880 emissions are representative of TV permit P073-R3M2. Units CAP-1 and CAP-2 are representative of NSR 412-M3R5. [&]quot;<" representative of permit P073-R3M2. [&]quot;-" indicates emissions of this pollutant are not expected. ### **Engine Emission Calculations** | Engine Input Information | | | | | | | | | |--------------------------|---------------------|--|--|--|--|--|--|--| | Engine Make/Model | Waukesha L7042 GSIU | | | | | | | | | Unit | C-867 | | | | | | | | | Engine Type | 4SRB | | | | | | | | | | Engine Parameters | | | | | | | | | | | |----------------------|-------------------|-----------|----------------------|--|--|--|--|--|--|--|--| | Specification | Value | Units | Notes | | | | | | | | | | Hours of Operation | 8760 | hr/yr | - | | | | | | | | | | Maximum Horsepower | 1195 | hp | TV Permit P073R3 | | | | | | | | | | Requested Horsepower | 1045.63 | hp | 2019 Stack Test Data | | | | | | | | | | Maximum Speed | 1000 | rpm | Manufacturer | | | | | | | | | | Volumetric Exhaust | 1113.18 | CFM | 2019 Stack Test Data | | | | | | | | | | Fuel HHV | 1050 | Btu/scf | Nominal | | | | | | | | | | Fuel Usage Rate | 7458 | Btu/hp-hr | Manufacturer | | | | | | | | | | Heat Input Rating | 7.80 | MMBtu/hr | Calculated | | | | | | | | | | Hourly Fuel Usage | 7.43 | Mscf/hr | Calculated | | | | | | | | | | Annual Fuel Usage | 65.06 | MMscf/yr | Calculated | | | | | | | | | | Stack Temp | 1060 | deg F | TV Permit P073R3 | | | | | | | | | | Stack Diameter | 0.83 | ft | TV Permit P073R3 | | | | | | | | | | Stack Height | 40 | ft | TV Permit P073R3 | | | | | | | | | | Stack Velocity | 34.29 | ft/s | Calculated | | | | | | | | | | | Uncontrolled Emissions for Criteria Pollutants, VOCs, and HAPs | | | | | | | | | | |---|--|-----------------------|--------|------------------------------|--|--|--|--|--|--| | Pollutant | EF | Emiss | Notes | | | | | | | | | Pollutalit | (g/hp-hr) | /hp-hr) (lb/hr) (tpy) | | Notes | | | | | | | | NO_{χ}^{-1} | 13.00 | 29.97 | 131.26 | Manufacturer | | | | | | | | CO ¹ | 9.00 | 20.75 | 90.87 | Manufacturer | | | | | | | | VOC ¹ | 0.30 | 0.69 | 3.03 | Manufacturer | | | | | | | | PM/PM ₁₀ /PM _{2.5} ² | - | 0.066 | 0.29 | AP-42 Table 1.4-2 | | | | | | | | SO ₂ ³ | - | 0.11 | 0.46 | Pipeline Quality Natural Gas | | | | | | | | Total HAPs ² | - | 0.80 | 3.51 | AP-42 Table 3.2-3 (4SRB) | | | | | | | | Formaldehyde ² | - | 0.16 | 0.70 | AP-42 Table 3.2-3 (4SRB) | | | | | | | | Controlled Emissions for Criteria Pollutants, VOCs, and HAPs | | | | | | | | | |--|-----------|--|-----------|-------|------------------------------|--|--|--| | Pollutant | EF | EF (With Safety Factor) ⁴ (g/hp-hr) | Emissions | | Notes | | | | | | (g/hp-hr) | | (lb/hr) | (tpy) | Notes | | | | | NO _X | 1.98 | 2.38 | 5.48 | 23.99 | 2019 Stack Test | | | | | со | 0.84 | 1.01 | 2.32 | 10.18 | 2019 Stack Test | | | | | voc | 0.15 | - | 0.35 | 1.51 | Johnson & Matthey Catalyst | | | | | PM/PM ₁₀ /PM _{2.5} | - | - | 0.066 | 0.29 | AP-42 Table 1.4-2 | | | | | SO ₂ | - | - | 0.11 | 0.46 | Pipeline Quality Natural Gas | | | | | Total HAPs | - | - | 0.80 | 3.51 | AP-42 Table 3.2-3 (4SRB) | | | | | Formaldehyde | - | - | 0.16 | 0.70 | AP-42 Table 3.2-3 (4SRB) | | | | | GHG Emissions Calculations | | | | | | | | |----------------------------|-----------------|-----------|----------|-------------------------------|--|--|--| | Pollutant | EF ⁵ | Emissions | | Notes | | | | | | kg/MMBtu | (lb/hr) | (tpy) | Notes | | | | | CO ₂ | 53.06 | 912.22 | 3,995.54 | 40 CFR 98 Subpart C Table C-1 | | | | | CH ₄ | 1.0E-03 | 0.017 | 0.075 | 40 CFR 98 Subpart C Table C-2 | | | | | N_2O | 1.0E-04 | 1.72E-03 | 0.0075 | 40 CFR 98 Subpart C Table C-2 | | | | | CO₂e | - | 913.17 | 3,999.67 | | | | | ^[1] Based on TV Permit P073R3 ^[2] AP-42 (7/2000) Table 3.2-3, 4-stroke rich burn (4SRB) ^[3] SO_2 emissions calculated based on the pipeline quality natural gas sulfur content of 5 gr/100 scf ⁵ grains S/100 scf * 1 lb S/7000 grains S *(64 g/mol SO₂) / (32 g/mol S) * Fuel usage Mscf/hr ^[4] A 20% safety factor has been added to NOx and CO emissions. ^{[5] 40} CFR Part 98, Subpart C, Table C-1 and Table C-2 ## **Engine Emission Calculations** | Engine Input Information | | | | | | | | | | |--------------------------|---------------------|--|--|--|--|--|--|--|--| | Engine Make/Model | Waukesha L7042 GSIU | | | | | | | | | | Unit | C-868 | | | | | | | | | | Engine Type | 4SRB | | | | | | | | | | | Engine Para | meters | | |----------------------|-------------|-----------|----------------------| | Specification | Value | Units | Notes | | Hours of Operation | 8760 | hr/yr | - | | Maximum Horsepower | 1195 | hp | TV Permit P073R3 | | Requested Horsepower | 889.66 | hp | 2019 Stack Test Data | | Maximum Speed | 1000 | rpm | Manufacturer | | Volumetric Exhaust | 1252.21 | CFM | 2019 Stack Test Data | | Fuel HHV | 1050 | Btu/scf | Nominal | | Fuel Usage Rate | 7458 | Btu/hp-hr | Manufacturer | | Heat Input Rating | 6.64 | MMBtu/hr | Calculated | | Hourly
Fuel Usage | 6.32 | Mscf/hr | Calculated | | Annual Fuel Usage | 55.36 | MMscf/yr | Calculated | | Stack Temp | 1060 | deg F | TV Permit P073R3 | | Stack Diameter | 0.83 | ft | TV Permit P073R3 | | Stack Height | 40 | ft | TV Permit P073R3 | | Stack Velocity | 38.57 | ft/s | Calculated | | | Uncontrolled Emissions for Criteria Pollutants, VOCs, and HAPs | | | | | | | | | | | |---|--|---------|--------|------------------------------|--|--|--|--|--|--|--| | Pollutant | EF | Emiss | Notes | | | | | | | | | | Pollutalit | (g/hp-hr) | (lb/hr) | (tpy) | Notes | | | | | | | | | NO_{χ}^{1} | 13.00 | 25.50 | 111.68 | Manufacturer | | | | | | | | | CO ¹ | 9.00 | 17.65 | 77.32 | Manufacturer | | | | | | | | | VOC ¹ | 0.30 | 0.59 | 2.58 | Manufacturer | | | | | | | | | PM/PM ₁₀ /PM _{2.5} ² | - | 0.066 | 0.29 | AP-42 Table 1.4-2 | | | | | | | | | SO ₂ ³ | - | 0.090 | 0.40 | Pipeline Quality Natural Gas | | | | | | | | | Total HAPs ² | - | 0.68 | 2.99 | AP-42 Table 3.2-3 (4SRB) | | | | | | | | | Formaldehyde ² | - | 0.14 | 0.60 | AP-42 Table 3.2-3 (4SRB) | | | | | | | | | | Controlled Emissions for Criteria Pollutants, VOCs, and HAPs | | | | | | | | | | | | |--|--|--------------------------|---------|----------|------------------------------|--|--|--|--|--|--|--| | Pollutant | EF | EF (With Safety Factor)4 | E | missions | Notes | | | | | | | | | Pollutarit | (g/hp-hr) | (g/hp-hr) | (lb/hr) | (tpy) | Notes | | | | | | | | | NO _X | 0.19 | 0.23 | 0.45 | 1.96 | 2019 Stack Test | | | | | | | | | со | 0.79 | 0.95 | 1.86 | 8.14 | 2019 Stack Test | | | | | | | | | VOC | 0.15 | - | 0.29 | 1.29 | Johnson & Matthey Catalyst | | | | | | | | | PM/PM ₁₀ /PM _{2.5} | - | - | 0.066 | 0.29 | AP-42 Table 1.4-2 | | | | | | | | | SO ₂ | - | - | 0.090 | 0.40 | Pipeline Quality Natural Gas | | | | | | | | | Total HAPs | - | - | 0.68 | 2.99 | AP-42 Table 3.2-3 (4SRB) | | | | | | | | | Formaldehyde | - | - | 0.14 | 0.60 | AP-42 Table 3.2-3 (4SRB) | | | | | | | | | | GHG Emissions Calculations | | | | | | | | | | | | |-------------------|----------------------------|----------|-----------|-------------------------------|--|--|--|--|--|--|--|--| | Pollutant | EF ⁵ | | Emissions | Notes | | | | | | | | | | Pollutarit | kg/MMBtu | (lb/hr) | (tpy) | Notes | | | | | | | | | | CO ₂ | 53.06 | 776.15 | 3,399.55 | 40 CFR 98 Subpart C Table C-1 | | | | | | | | | | CH₄ | 1.0E-03 | 0.015 | 0.064 | 40 CFR 98 Subpart C Table C-2 | | | | | | | | | | N_2O | 1.0E-04 | 1.46E-03 | 0.0064 | 40 CFR 98 Subpart C Table C-2 | | | | | | | | | | CO ₂ e | - | 776.95 | 3,403.06 | | | | | | | | | | ^[1] Based on TV Permit P073R3 ^[2] AP-42 (7/2000) Table 3.2-3, 4-stroke rich burn (4SRB) ^[3] SO_2 emissions calculated based on the pipeline quality natural gas sulfur content of 5 gr/100 scf ⁵ grains S/100 scf * 1 lb S/7000 grains S *(64 g/mol SO₂) / (32 g/mol S) * Fuel usage Mscf/hr ^[4] A 20% safety factor has been added to NOx and CO emissions. ^{[5] 40} CFR Part 98, Subpart C, Table C-1 and Table C-2 ## Caterpillar CG137-12 - Unit C-320 **Emission Unit:** C-320 Description: Natural Gas Compressor - 4SRB Manufacturer: Caterpillar Model: CG137-12 Serial No.: TBD Manufacture Date: TBD Rated Speed: 1800 RPM Manufacturer Manufacturer Rated Horse Power: 600 hp Fuel Consumption: 7400 BTU/hp-hr Manufacturer Fuel Heating Value: 1050 Btu/scf Nominal Heating Rate: MMBtu/hr Calculated 4.44 Fuel Usage 0.0042 MMscf/hr Calculated 37.0 MMscf/yr Calculated Operating Hours: 8760 hr/yr #### **Emission Rates** Uncontrolled Emissions | _ | NO _x | со | VOC1 | SO ₂ ² | PM ³ | нсно | Total HAPs ⁴ | CO2 | CH ₄ | N ₂ O | CO ₂ e | _ | | |---------------|-----------------|-------|-------|------------------------------|-----------------|-------|-------------------------|-----------------|-----------------|------------------|-------------------|----------|--| | _ | 9.97 | 9.97 | 0.35 | | | 0.070 | | | | | | g/hp-hr | Catalyst Manufacturer Data | | | | | | | | | | 531 | 3.86 | | | g/hp-hr | Manufacturer Data | | | | | | | 0.010 | | | | | 1.00E-04 | | lb/MMBtu | AP-42 Table 3.2-2, 40 CFR 98 Table C-2 | | | | | | | | | | | | | | lb/MMBtu | Scaled for Fuel Heat Value | | _ | | | | 0.0025 | | | | | | | | gr S/scf | | | | 13.19 | 13.19 | 0.46 | 0.0030 | 0.044 | 0.093 | 0.13 | 702.39 | 5.11 | 4.44E-04 | 830.17 | lb/hr | | | | 57.76 | 57.76 | 2.03 | 0.013 | 0.19 | 0.41 | 0.58 | 3076.48 | 22.36 | 1.94E-03 | 3636.15 | tpy | | | 0 . " 15 | | | | | | | | | | | | | | | Controlled Er | nissions | | | | | | | | | | | | | | _ | NO _x | со | VOC1 | SO ₂ ² | PM ³ | нсно | Total HAPs⁴ | CO ₂ | CH₄ | N ₂ O | CO₂e | _ | | | | 0.50 | 0.50 | 0.074 | | | 0.070 | | | | | | g/hp-hr | Catalyst Manufacturer Data | | | 95.0% | 95.0% | 79.0% | | | 0.0% | | | | | | % | Control Efficiency | | | | | | | | | | 531 | 3.86 | | | g/hp-hr | Manufacturer Data | | | | | | | 0.010 | | | | | 1.00E-04 | | lb/MMBtu | AP-42 Table 3.2-2, 40 CFR 98 Table C-2 | | | | | | | | | | | | | | lb/MMBtu | Scaled for Fuel Heat Value | | _ | | | | 0.0025 | | | | | | | | gr S/scf | | | _ | 0.66 | 0.66 | 0.097 | 0.0030 | 0.044 | 0.093 | 0.13 | 702.39 | 5.11 | 4.44E-04 | 830.17 | lb/hr | | | | 2.90 | 2.90 | 0.43 | 0.013 | 0.19 | 0.41 | 0.58 | 3076.48 | 22.36 | 1.94E-03 | 3636.15 | tpy | | #### Notes ¹ VOC emissions include VOC plus HCOH emissions. $^{^{2}}$ SO $_{2}$ is calculated based on the default fuel sulfur content from AECT of 0.0025 grains total sulfur per scf. ³ It is assumed that PM = PM₁₀ = PM_{2.5}, PM emissions are derivied from AP 42 emissions factors and converted to g/hp-hr using engine specifications. ⁴ Total HAPs were calculated using AP-42 emissions factors for a 4-Stroke Rich Burn Engine. ## **Glycol Dehydrator Emission Calculations** | Dehydrator Input Information | | | | | | | | | |------------------------------|--------------|--------|--|--|--|--|--|--| | Make | l | .akota | | | | | | | | Model Number | N/A | | | | | | | | | Serial Number | | N/A | | | | | | | | Unit(s): | | Dehy-1 | | | | | | | | Annual Operating Hours | 8760 hr | | | | | | | | | Dry Gas Flow Rate | 25 MMscf/day | | | | | | | | | | | VC | C and HAP En | nissions | | | | | |-----------------------|------------------|--------------------------------|--------------|--------------------------|----------------|------------------------------|--------------|----------------| | Pollutant Emissions | Uncontrolled Fla | sh Tank Emissions ¹ | Regenerator | · Emissions ² | Total Uncontro | olled Emissions ³ | Total Contro | lled Emissions | | Foliutalit Ellissions | lb/hr | ton/yr | lb/hr | ton/yr | lb/hr | ton/yr | lb/hr | ton/yr | | Methane | 12.1236 | 53.1013 | 0.0163 | 0.0713 | 12.1399 | 53.1726 | 12.14 | 53.17 | | Carbon Dioxide | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 0.00 | | Hydrogen Sulfide | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 0.00 | | Ethane | 2.5761 | 11.2834 | 0.0117 | 0.0514 | 2.5878 | 11.3348 | 2.59 | 11.33 | | Propane | 2.4638 | 10.7915 | 0.0191 | 0.0835 | 2.4829 | 10.8750 | 2.48 | 10.88 | | Isobutane | 0.7525 | 3.2958 | 0.0065 | 0.0284 | 0.7590 | 3.3242 | 0.76 | 3.32 | | n-Butane | 1.7091 | 7.4859 | 0.0161 | 0.0706 | 1.7252 | 7.5565 | 1.73 | 7.56 | | Isopentane | 0.7643 | 3.3475 | 0.0046 | 0.0201 | 0.7689 | 3.3676 | 0.77 | 3.37 | | n-Pentane | 0.8709 | 3.8145 | 0.0047 | 0.0204 | 0.8756 | 3.8349 | 0.88 | 3.83 | | n-Hexane | 0.5769 | 2.5270 | 0.0023 | 0.0101 | 0.5792 | 2.5371 | 0.58 | 2.54 | | Cyclo Hexane | 0.0216 | 0.0944 | 0.0002 | 0.0011 | 0.0218 | 0.0955 | 0.02 | 0.10 | | Other Hexanes | 0.8080 | 3.5388 | 0.0034 | 0.0150 | 0.8114 | 3.5538 | 0.81 | 3.55 | | Methylcyclohexane | 0.2502 | 1.0959 | 0.0018 | 0.0078 | 0.2520 | 1.1037 | 0.25 | 1.10 | | Heptanes | 0.5012 | 2.1951 | 0.0014 | 0.0061 | 0.5026 | 2.2012 | 0.50 | 2.20 | | Benzene | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.00 | 0.00 | | Toluene | 0.0060 | 0.0264 | 0.0002 | 0.0009 | 0.0062 | 0.0273 | 0.01 | 0.03 | | Ethylbenzene | 0.0158 | 0.0693 | 0.0005 | 0.0020 | 0.0163 | 0.0713 | 0.02 | 0.07 | | Xylenes | 0.0237 | 0.1038 | 0.0007 | 0.0033 | 0.0244 | 0.1071 | 0.02 | 0.11 | | C8+ | 0.2392 | 1.0477 | 0.0001 | 0.0002 | 0.2393 | 1.0479 | 0.24 | 1.05 | | TOTAL VOC | 9.00 | 39.43 | 0.062 | 0.27 | 9.06 | 39.70 | 9.06 | 39.70 | | TOTAL HAP | 0.62 | 2.73 | 0.0037 | 0.016 | 0.63 | 2.74 | 0.63 | 2.74 | $^{^{\}rm 1}$ From "Flash Tank Off Gas" stream in GLYCalc Report ² From "Controlled Regenerator Emissions" stream in GLYCalc Report (controlled with condenser). ³ Summation of the Uncontrolled Flash Tank Emissions and Regenerator Emissions ## **Condensate Tank Emissions** | Uncontrolled Tank Emissions ¹ | | | | | | | | | | | |--|------|-------|------|------|--|--|--|--|--|--| | | Tota | l VOC | Tota | HAP | | | | | | | | Emissions | TK-1 | TK-2 | TK-1 | TK-2 | | | | | | | | | tpy | tpy | tpy | tpy | | | | | | | | Flash | 0.70 | 0.70 | 0.04 | 0.04 | | | | | | | | Working & Breathing | 6.02 | 6.02 | 0.49 | 0.49 | | | | | | | | Total | 6.72 | 6.72 | 0.53 | 0.53 | | | | | | | ## Notes ¹ Emissions are calculated using ProMax. ## **Facility-Wide Fugitive Emissions** | | Emission Factors and Emission Rates for VOCs and HAPs | | | | | | | | | | | | |--------------------------------|---|----------------|--------------|------------------------------|----------------------------|------------------------------|----------------------------|--|--|--|--|--| | Equipment Type | Emission Factor
(lb/hr/ source) | Source Count * | % VOC
C3+ | VOC Emission
Rate (lb/hr) | VOC Emission
Rate (tpy) | HAP Emission
Rate (lb/hr) | HAP Emission
Rate (tpy) | | | | | | | Valves - Inlet Gas | 0.00992 | 100 | 9.071% | 0.09
 0.39 | 0.01 | 0.05 | | | | | | | Valves - Liquid | 0.00551 | 20 | 100.00% | 0.11 | 0.48 | 0.00 | 0.01 | | | | | | | Relief Valves/Other | 0.01940 | 105 | 9.07% | 0.18 | 0.81 | 0.024 | 0.105 | | | | | | | Pump Seals - Liquid | 0.02866 | 30 | 100.00% | 0.86 | 3.77 | 0.010 | 0.044 | | | | | | | Flanges/Connectors - Inlet Gas | 0.00086 | 35 | 9.07% | 2.73E-03 | 0.01 | 3.53E-04 | 1.55E-03 | | | | | | | Flanges/Connectors - Liquid | 0.00024 | 25 | 100.00% | 6.05E-03 | 0.03 | 7.10E-05 | 3.11E-04 | | | | | | | Compressor Seals | 0.01940 | 25 | 9.07% | 0.044 | 0.19 | 0.006 | 0.025 | | | | | | | | Total | | | 1.30 | 5.68 | 0.053 | 0.23 | | | | | | * Source counts are actuals from the facility. Source: EPA Protocol for Equipment Leak Emission Estimates, November, 1995, EPA-453/R-95-017 #### IACX - Red Bluff #3 Compressor Station ## **Capstone C65 Microturbine** Emission Unit: CAP-1, CAP-2 Source Description: Natural Gas-Fired Microturbine Annual operating hours: 8,760 | Parameters | Value | Unit | Note | |----------------------------|---------|----------|-------------------| | Maximum Power Rating | 65 | kW | Manufacturer data | | Maximum Horsepower | 87.17 | hp | Calculated | | Total Mass Flow of Exhaust | 1.08 | lb/s | Manufacturer data | | Fuel Heating Value | 1,050 | Btu/scf | Nominal | | Net Heat Rate LHV | 11,800 | Btu/kWh | Manufacturer data | | Fuel Usage | 767,000 | Btu/hr | Calculated | | Hourly Fuel Usage | 0.73 | Mscf/hr | Calculated | | Annual Fuel Usage | 6.4 | MMscf/yr | Calculated | | Heat Input | 0.77 | MMBtu/hr | Calculated | #### Emissions per Unit | | NOx | со | VOC | SO ₂ ¹ | PM ² | Total
HAP ³ | HCOH ³ | CO2 | CH₄ | N ₂ O | CO₂e ⁵ | Unit | Note | |---|------------|-------|--------|------------------------------|-----------------|---------------------------|-------------------|--------|--------|------------------|-------------------|----------|---| | | 0.16 | 0.42 | 0.034 | | | | | | | | | g/hp-hr | Manufacturer data | | | | | | | 0.0066 | | | | | | | lb/MMBtu | AP-42 Table 3.1-2a | | Emission Factors | | | | | 0.0068 | | | | | | | lb/MMBtu | EF adjusted based on fuel heat value ⁴ | | | | | | | | | | 53.06 | 0.001 | 1.0E-04 | | kg/MMBtu | Table C-1 and C-2 of 40 CFR Part 98 | | | | | | | | | | 116.73 | 0.0022 | 2.2E-04 | | lb/MMBtu | | | | 0.031 | 0.081 | 0.0065 | 5.22E-04 | 5.2E-06 | | | 89.5 | 0.0017 | 1.7E-04 | 89.6 | lb/hr | | | Emission Rates | | | | | | 0.0080 | 0.0032 | | | | | lb/hr | | | | 0.13 | 0.35 | 0.029 | 0.0023 | 2.3E-05 | 0.035 | 0.014 | 392.2 | 0.0074 | 7.4E-04 | 392.6 | tpy | 8760 hrs/yr | | SO ₂ emissions based on fuel | content of | | 2.5 | gr S/Mscf | | | | | | | | | | ¹ SO₂ emissions based on fuel consumption and fuel sulfur content of CH₄ GWP = 25 $N_2O GWP = 298$ #### Exhaust Parameters | Parameters | Value | Unit | Note | |-------------------------|-------|------------|---| | Exhaust temp | 588 | °F | Manufacturer data | | Stack height | 15.0 | ft | Engineering Estimate | | Stack diameter | 1.00 | ft | Engineering Estimate | | Exhaust flow (Actual) | 540 | acfm | Flow (acfm) = Flow (scfm) * (Stack Temp + 460) / 528 * 29.92 / Site Bar. Pres. / (100% - Moisture%) | | Exhaust velocity | 11.5 | ft/sec | Exhaust flow / stack area | | O ₂ F factor | 8,710 | dscf/MMBtu | Method 9 | | Moisture | 10 | % | nominal | | Exhaust flow (Dry) | 213.5 | dscfm | = heat input * O2 F * [20.9 / (20.9 - O2%)] | | O ₂ % | 10 | % | | | Site Elevation | 3,741 | ft MSL | | | Pressure at Elevation | 26.09 | in Hg | | ² gr S/Mscf * fuel scf/hr * 1 lb/7000 gr * 64 lb SO₂/ 32 lb S = lb/hr SO₂ ² Assumes TSP = PM₁₀ = PM_{2.5} ³ GRI HAPCalc ⁴ AP-42 Table 1.4-1 natural gas heat value is: 1,020 Btu/scf ⁵ Global Warming Potentials (GWP) are from Table A-1 of the EPA GHG MRR under 40 CFR Part 98. ## Caterpillar G3516 TALE - Maximum emissions calculated based on 100% load. - Nominal power rating is 1340 hp at 100% load. - Unit is turbocharged and is not derated, per NMED policy. - 1.50 g/hp-hr NOx uncontrolled (engine manufacturer data). - 1.89 g/hp-hr CO uncontrolled (engine manufacturer data). - 0.46 g/hp-hr VOC uncontrolled (engine manufacturer data). - Maximum fuel firing rate is 7471 Btu/hp-hr at 100% load (manufacturer specifications). - Heating value of fuel gas is 1049 Btu/scf. - Unit is authorized for 8760 hr/vr of operation at 100% load. - Maximum particulate emissions are estimated using AP-42 emission factors for natural gas combustion. - 7.6 lb/10⁶ scf (Table 1.4-2) ### Maximum Fuel Consumption (7471 Btu/hp-hr)(1340 hp) / (1049 Btu/scf) = 9544 scf/hr #### Maximum Uncontrolled Emissions ``` NO_x = (1.50 \text{ g/hp-hr})(1340 \text{ hp}) / (453.6 \text{ g/lb}) = 4.43 \text{ lb/hr} = 19.40 \text{ tn/yr} ``` $$CO = (1.89 \text{ g/hp-hr})(1340 \text{ hp}) / (453.6 \text{ g/lb}) = 5.58 \text{ lb/hr} = 24.5 \text{ tn/yr}$$ $$VOC = (0.46 \text{ g/hp-hr})(1340 \text{ hp}) / (453.6 \text{ g/lb}) = 1.36 \text{ lb/hr} = 5.95 \text{ tn/yr}$$ $$PM = (9544 \text{ scf/hr})(7.6 \text{ lb/}10^6 \text{ scf}) = 0.07 \text{ lb/hr} = 0.32 \text{ tn/yr}$$ ## **Superior 8GTLA** - Maximum emissions calculated based on 100% load. - Nominal power rating is 1073 hp at 100% load. - Unit is turbocharged and is not derated, per NMED policy. - 5.0 g/hp-hr NOx uncontrolled (engine manufacturer data). - 3.0 g/hp-hr CO uncontrolled (engine manufacturer data). - 0.75 g/hp-hr VOC uncontrolled (engine manufacturer data). - Maximum fuel firing rate is 7400 Btu/hp-hr at 100% load (manufacturer specifications). - Heating value of fuel gas is 1049 Btu/scf. - Unit is authorized for 8760 hr/yr of operation at 100% load. - Maximum particulate emissions are estimated using AP-42 emission factors for natural gas combustion. - $7.6 \text{ lb}/10^6 \text{ scf (Table } 1.4-2)$ ## Maximum Fuel Consumption (7400 Btu/hp-hr)(1073 hp) / (1049 Btu/scf) = 7569 scf/hr #### Maximum Uncontrolled Emissions ``` NOx = (5.0 \text{ g/hp-hr})(1073 \text{ hp}) / (453.6 \text{ g/lb}) = 11.83 \text{ lb/hr} = 51.8 \text{ tn/yr} ``` $$CO = (3.0 \text{ g/hp-hr})(1073 \text{ hp}) / (453.6 \text{ g/lb}) = 7.10 \text{ lb/hr} = 31.1 \text{ tn/yr}$$ $$VOC = (0.75 \text{ g/hp-hr})(1073 \text{ hp}) / (453.6 \text{ g/lb}) = 1.77 \text{ lb/hr} = 7.8 \text{ tn/yr}$$ $$PM = (7569 \text{ scf/hr})(7.6 \text{ lb/}10^6 \text{ scf}) = 0.06 \text{ lb/hr} = 0.25 \text{ tn/yr}$$ # Insignificant Equipment ## IACX - Red Bluff #3 Compressor Station ## **HRU Vent Emissions** Emission Unit: HRU-1 Source Description: Helium Recovery Unit (HRU) HRU Vent Flow Rate 0.925 MMSCFD | | | HRU Inlet | HRU Vent | HRU Vent | HRU Vent | HRU Vent | |-----------|-------|--------------------|----------|----------------------|----------|----------| | Component | MW | mol % ¹ | mol % | lb/year ² | lb/hr | ton/yr | | He | 4.0 | 0.41% | 4.40% | 156,373.68 | 17.85 | 78.19 | | N2 | 28.01 | 7.00% | 40.99% | 10,200,983.09 | 1,164.50 | 5,100.49 | | CO2 | 44.01 | 0.29% | 0.00% | 0.00 | 0.00 | 0.00 | | CH4 | 16.04 | 84.95% | 54.59% | 7,779,800.47 | 888.11 | 3,889.90 | | C2 | 30.07 | 4.81% | 0.027% | 7,266.97 | 0.83 | 3.63 | | C3 | 44.1 | 1.72% | 0.0021% | 826.75 | 0.094 | 0.413 | | iC4 | 58.12 | 0.24% | 0.00% | 0.00 | 0.00 | 0.00 | | nC4 | 58.12 | 0.42% | 0.00% | 0.00 | 0.00 | 0.00 | | iC5 | 72.15 | 0.08% | 0.00% | 0.00 | 0.00 | 0.00 | | nC5 | 72.15 | 0.07% | 0.00% | 0.00 | 0.00 | 0.00 | | C6 | 86.18 | 0.01% | 0.00% | 0.00 | 0.00 | 0.00 | | Total VOC | | | | 826.75 | 0.094 | 0.413 | ¹ Representative feed analysis ² HRU Vent scf x mol % x 365 days x MW lb/lbmol / 380 scf/lbmol = lb/year The helium recovery unit will recover 97% of the helium and 3% of the N2. This calculation of total VOC vented does not account for the recovered helium and N2 as they are not regulated pollutants. ## IACX - Red Bluff #3 Compressor Station ## **NRU Vent Emissions** **Emission Unit:** NRU-1 Nitrogen Rejection Unit (NRU) Source Description: NRU Vent Flow Rate 0.185 MMSCFD Per NRU Number of NRU 5.0 NRU Vent Flow Rate 0.925 MMSCFD Site total for 5 NRUs | | | NRU Inlet | NRU Vent | NRU Vent | NRU Vent | NRU Vent | |-----------|-------|--------------------|----------|----------------------|----------|----------| | Component | MW | mol % ¹ | mol % | lb/year ² | lb/hr | ton/yr | | He | 4.0 | 0.41% | 4.40% | 156,373.68 | 17.85 | 78.19 | | N2 | 28.01 | 7.00% | 40.99% | 10,200,983.09 | 1,164.50 | 5,100.49 | | CO2 | 44.01 | 0.29% | 0.00% | 0.00 | 0.00 | 0.00 | | CH4 | 16.04 | 84.95% | 54.59% | 7,779,800.47 | 888.11 | 3,889.90 | | C2 | 30.07 | 4.81% | 0.027% | 7,266.97 | 0.83 | 3.63 | | C3 | 44.1 | 1.72% | 0.0021% | 826.75 | 0.094 | 0.413 | | iC4 | 58.12 | 0.24% | 0.00% | 0.00 | 0.00 | 0.00 | | nC4 | 58.12 | 0.42% | 0.00% | 0.00 | 0.00 | 0.00 | | iC5 | 72.15 | 0.08% | 0.00% | 0.00 | 0.00 | 0.00 | | nC5 | 72.15 | 0.07% | 0.00% | 0.00 | 0.00 | 0.00 | | C6 | 86.18 | 0.01% | 0.00% | 0.00 | 0.00 | 0.00 | | Total | | 100.0% | 100.0% | 18,145,251.0 | 2,071.4 | 9,072.6 | | Total VOC | | | | 826.75 | 0.094 | 0.413 | Representative feed analysis NRU Vent scf x mol % x 365 days x MW lb/lbmol / 380 scf/lbmol = lb/year ## **Dehydrator Reboiler Emission Calculations** | Heater Input Information | | | | | |--------------------------|------------|--|--|--| | Make/Model | Thermoflux | | | | | Serial Number | 4140-02 | | | | | Unit(s): | Rebl-1 | | | | | Heater Parameters | | | | | | | | |------------------------|------|----------|--|--|--|--|--| | Input heat rate | 1.00 | MMBtu/hr | | | | | | | Fuel heat value | 1050 | Btu/scf | | | | | | | Fuel rate | 0.95 | Mscf/hr | | | | | | | Annual operating hours | 8760 | hours | | | | | | | Annual fuel usage | 8.34 | MMscf/yr | | | | | | | | Emissions for Criteria Pollutants, VOCs and HAPs | | | | | | | | | | | | |------------------------------|--|--------|------------------------------
-------------------|----------|----------|----------|----------|-------------|-----------------|----------|----------------------| | NO _x ¹ | CO ¹ | VOC1 | SO ₂ ² | PM ^{1,3} | нсно | Toluene | Benzene | n-Hexane | Naphthalene | Dichlorobenzene | HAPs | Units | | 100 | 84 | 5.5 | - | 7.6 | 0.075 | 3.40E-03 | 2.10E-03 | 1.80E+00 | 6.10E-04 | 1.20E-03 | - | lb/MMscf | | 102.9 | 86.5 | 5.7 | - | 7.8 | 0.077 | 3.50E-03 | 2.16E-03 | 1.85E+00 | 6.28E-04 | 1.24E-03 | - | lb/MMscf | | 0.098 | 0.082 | 0.0054 | 0.014 | 0.0075 | 7.35E-05 | 3.33E-06 | 2.06E-06 | 1.76E-03 | 5.98E-07 | 1.18E-06 | 1.85E-03 | lb/hr ⁴ | | 0.43 | 0.36 | 0.024 | 0.060 | 0.033 | 3.22E-04 | 1.46E-05 | 9.02E-06 | 7.73E-03 | 2.62E-06 | 5.15E-06 | 8.08E-03 | tons/yr ⁵ | | GHG Emissions Calculations | | | | | | | | | |----------------------------|---------------------------|----------|----------|-------------------------------|--|--|--|--| | Pollutant | EF ⁶ Emissions | | | Notes | | | | | | ronatant | kg/MMBtu | (lb/hr) | (tpy) | Notes | | | | | | CO ₂ | 53.06 | 116.98 | 61.41 | 40 CFR 98 Subpart C Table C-1 | | | | | | CH ₄ | 1.0E-03 | 2.20E-03 | 1.16E-03 | 40 CFR 98 Subpart C Table C-2 | | | | | | N ₂ O | 1.0E-04 | 2.20E-04 | 1.16E-04 | 40 CFR 98 Subpart C Table C-2 | | | | | | CO₂e | - | 117.10 | 61.48 | | | | | | ¹ Emission factors from AP-42 Tables 1.4-1 and 1.4-2 (7/98) Emission factors have been adjusted according to AP-42: EF (at fuel heating value) = Fuel Heat Value / EF Heat Value (1020 Btu/scf) * EF (at 1020 Btu/scf) tons/yr = Hourly emissions (lb/hr) * Hours of operation * 1ton/2000lb $^{^{\}rm 2}~{\rm SO_2}$ emissions based on fuel content of 5 grains of sulfur per 100 scf SO_2 lb/hr = 5gr S/100 scf * Fuel usage (scf/hr) * 1 lb/7000 gr * 64lb SO_2 / 32lb S ³ Assumes PM (Total) = PM_{10} = $PM_{2.5}$ ⁴ Hourly emission rates calculated as follows: NO_x, CO, VOC, PM, HAPs lb/hr = EF (lb/MMscf) * Fuel usage (Mscf/hr) * 1MMscf/1000Mscf ⁵ Annual emissions calculated as follows: ⁶ GHG emission factors taken from 40 CFR Part 98, Subpart C, Table C-1 and Table C-2 ## Truck Loading Emission unit: Load Source Description: Condensate Loading | ProMax Tank Loading Emissions | | | | | | | |-------------------------------|---------------------------|-------|--|--|--|--| | Condensate Tanks | | | | | | | | VOC Emissions | | | | | | | | 0.020 | lb/hr | Total | | | | | | 0.087 | tpy | Total | | | | | | HAP Emissions | | | | | | | | 0.0071 | 0.0071 lb/hr Total | | | | | | | 0.031 | tpy | Total | | | | | | Individual HAP Emission Calculations | | | | | | | |--------------------------------------|----------|--|--|--|--|--| | Condensate Tanks | | | | | | | | HAP tons/yr | | | | | | | | n-Hexane | 0.007 | | | | | | | Benzene | 3.76E-04 | | | | | | | Toluene | 1.09E-04 | | | | | | | Ethylbenzene | 1.08E-06 | | | | | | | Xylenes | 7.33E-06 | | | | | | | Total | 0.0071 | | | | | | | TPY Values for All Tanks | | | | | | |--------------------------|---------|--|--|--|--| | Pollutant | tons/yr | | | | | | VOC | 0.087 | | | | | | HAPs | 0.031 | | | | | ## IACX Roswell LLC - Red Bluff #3 Compressor Station ## **Red Bluff No. 3 Compressor Station** Unit: NGL LOAD ## **Hose Parameters** Vapor Hose Diameter 2 inches 10 foot Vapor Hose Length 0.218 ft³ Hose Volume Number of Hoses 2 Total Hose Volume 0.436 ft³ NGL Data¹ 321.27 psia NGL Tank Pressure 24 bbl/day NGL Throughput NGL Throughput 28,000 gal/month 9000 gal/load Capacity of Tank NGL Throughput 3.11 loads/month ## **Physical Data** Loadout Temperature (T) 591.67 R Molecular Weight 46.315 lb/lbmol 2.21E-02 lbmol/ft³ Moles in the vapor phase (n) 1.02E+00 lb/ft³ Vapor Density² ## **VOC Emissions from Pressurized NGL Loadout** | | | | | Monthly | Annual | |-------------|-------------------------------|-------------------------|-----------|-------------------------|--------------------| | | | Hose Volume | Loads per | Emissions | Emissions | | Source | Density (lb/ft ³) | (ft ³ /load) | month | (lb/month) ³ | (tpy) ⁴ | | Vapor Hoses | 1.023 | 0.436 | 3.11 | 1.39 | 0.0083 | | Total | | | | 1.39 | 0.0083 | Monthly Emission Rate (lb/month) = 1.02 lb 0.436332313 3.1111111 1.39 lb load month month ³ Monthly Emissions (lb/month) = Density (lb/ft³) x Hose Volume (ft³/load) x Loads per month (load/month) ⁴ Annual Emission Rate (tpy) = Uncontrolled emission rate (lb/hr) x (8,760 hr/yr) / (2,000 lb/ton). | Annual Emission Rate (tpy) = | 1.39 | 12 months | 1 ton | 8.33E-03 lb | |------------------------------|-------|-----------|----------|-------------| | | month | yr | 2,000 lb | yr | ¹ Values obtained from a similar facility. ² Calculated using PV = nRT, where R = Universal Gas Constant 10.73 cubic feet *psi/lbmole * deg R ## **Haul Road Emissions** | Haul Road In | put Information | |---------------------|-----------------------------------| | Unit(s): | Haul | | Source Description: | Fugitive Dust Generated by Trucks | | Unpaved Haul | Road Parameters | 5 | |---------------------------------------|-----------------|------| | Parameter | Value | Unit | | Empty Vehicle Weight ¹ | 16 | ton | | Load Size ² | 26.8 | ton | | Loaded Vehicle Weight ³ | 42.8 | ton | | Mean Vehicle Weight ⁴ | 29.4 | ton | | Vehicles Per Day ⁵ | 1.00 | VPD | | Vehicles Per Year | 365 | VPY | | Segment Length | 7.58E-03 | mile | | Trips per Segment | 1 | - | | Effective Segment Length ⁶ | 7.58E-03 | mile | | Trips per Hour ⁷ | 0.042 | - | | Wet Days ⁸ | 70 | day | | Surface Silt Content ⁹ | 4.8 | % | | Control Efficiency | 0 | % | ¹ Empty vehicle weight includes driver and occupants and full fuel load. ⁹ Surface silt content based on AP-42 Section 13.2.2.3 | Unpaved Road Emission Factors |-------------------------------|-------------------------------------|------------------------|----------|------------------|------------------|-------------------|------------------|------------------|--------------------------------|------------------|------------------|-------------------|------------------|------------------|-------------------|------------------|------------------|---------------------------------|--|------------------|--| | | Calculation Parameters ¹ | | | | | | | | Hourly Emission Factors Annual | | | Emission | Factors | | | | | | | | | | | S | W | Р | | k | | | а | | | b | | | E ² | | E ² | | E ² E _{ext} | | E _{ext} | | | Route | Silt Content ¹ | Mean Vehicle
Weight | Wet Days | PM ₃₀ | PM ₁₀ | PM _{2.5} | PM ₃₀ | PM ₁₀ | PM _{2.5} | PM ₃₀ | PM ₁₀ | PM _{2.5} | PM ₃₀ | PM ₁₀ | PM _{2.5} | PM ₃₀ | PM ₁₀ | PM _{2.5} | | | | | | % | tons | day | lb/VMT | lb/VMT | lb/VMT | | | | | | | lb/VMT | lb/VMT | lb/VMT | lb/VMT | lb/VMT | lb/VMT | | | | | Trucks | 4.8 | 29.42 | 70 | 4.9 | 1.5 | 0.15 | 0.70 | 0.90 | 0.90 | 0.45 | 0.45 | 0.45 | 7.21 | 1.84 | 0.18 | 5.83 | 1.48 | 0.15 | | | | ¹ Emission factors calculated per AP-42 Sec. 13.2.2.3 November, 2006, Equation 2. | | Unpaved Road Emissions | | | | | | | | | | | | | | | | | | |--------------------|------------------------|---------------------|---|-----------------------------------|------|---|------------------|--------|---------|--------|----------|---------|--------|--------|---------|--------|---------|---------| | Calculation Inputs | | | | | | Uncontrolled Emissions Controlled Emissions | | | | | | | | | | | | | | Route | Annual Operation | Number of Effective | | PM ₃₀ PM ₁₀ | | PN | 1 _{2.5} | | | | | | | | | | | | | | hr | mi | | trucks/yr | mi | mi/yr | lb/hr | tpy | | Trucks | 8,760 | 7.58E-03 | 1 | 365 | 0.01 | 3 | 0.0023 | 0.0081 | 0.00058 | 0.0021 | 0.000058 | 0.00021 | 0.0023 | 0.0081 | 0.00058 | 0.0021 | 0.00006 | 0.00021 | | | | Totals | | | | | 0.0023 | 0.0081 | 0.00058 | 0.0021 | 0.000058 | 0.00021 | 0.0023 | 0.0081 | 0.00058 | 0.0021 | 0.00006 | 0.00021 | ¹ Surface silt = % of 75 micron diameter and smaller particles E= Size Specific Emission Factor (lb/VMT) $^{^2}$ Include cargo, transported materials, etc. (7.1 lb/gal RVP5 *7560 gal truck/ 2000lb/ton) ³ Loaded vehicle weight = Empty + Load Size ⁴ Mean Vehicle weight = (Loaded Weight + Empty Weight) / 2 ⁵ Client provided ⁶ Effective segment length = trips per segment * segment length ⁷ Trips per hour = Vehicles per day * Segments per trip ÷ Hours of Operation per Day ⁸ Wet days is the NM default allowed by NMED without additional justification ² E = k x (s/12)^a x (W/3)^b (AP-42 page 13.2.2-4 Equation 1a, November 2006) s = surface material silt content (%) k, a, b = constants from AP-42 Table 13.2.2-2 W = Weighted Mean Vehicle Weight from Haul Road Inputs (tons) ³ VMT/hr = Vehicle Miles Travelled per hour= Trips per hour * Segment Length ⁴ Wet Day Emission Factor = E * (365 - Wet Days)/365. Wet days value is the NM default allowed by NMED without additional justification. Controlled Emissions = Uncontrolled Emissions * (1 - Control Factor/100% Control Efficiency = 0% Saved Date: 6/17/2021 ## **Section 7** ## **Information Used To Determine Emissions** #### <u>Information Used to Determine Emissions</u> shall include the following: - If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation. - ☑ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates. - If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the
calculations. - ☐ If an older version of AP-42 is used, include a complete copy of the section. - ☐ If an EPA document or other material is referenced, include a complete copy. - **☑** Fuel specifications sheet. - If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. ## Compressor Engines (Units C-867 and C-868) - Recent Stack Tests - Manufacturer Engine and Catalyst Data (Johnson & Matthey) - AP-42 Table 1.4-2 - AP-42 Table 3.2-3 - 40 CFR 98 Subparts A and C #### Compressor Engines (Units C-865 and C-880) - Manufacturer Engine Data - AP-42 Table 1.4-2 - AP-42 Table 3.2-3 - 40 CFR 98 Subparts A and C ## **Compressor Engines (Unit C-878)** - Manufacturer Engine Data - AP-42 Table 1.4-2 - AP-42 Table 3.2-3 - 40 CFR 98 Subparts A and C #### **Compressor Engines (Unit C-320)** - Manufacturer Engine and Catalyst Data - AP-42 Table 1.4-2 - AP-42 Table 3.2-3 - 40 CFR 98 Subparts A and C #### **Microturbines (Units CAP-1 & CAP-2)** - Manufacturer data - AP-42 Table 3.1-2a - GRI-HAPCalc output - Tables C-1 and C-2 of 40 CFR Part 98 ## **Helium Recovery Unit (Unit HRU)** • Representative feed analysis #### Nitrogen Recovery Unit (Unit NRU) • Representative feed analysis ## **Glycol Dehydrator Reboiler (Unit Reboil-1)** - Manufacturer Data - AP-42 Table 1.4-1 & 2 ## **Glycol Dehydrator (Unit Dehy-1)** - Extended Gas Analysis - GRI-GLYCalc - 40 CFR 98 Subparts A and C ## **Condensate Tanks (Units TK-1 and TK-2)** - Liquids Analysis - BR&E ProMax ## **Truck Loadout from Condensate Tanks (Unit Load)** - Liquids Analysis - BR&E ProMax ## **Unpaved Truck Hauling Emissions (Unit Haul)** • AP-42 13.2.2 Equations 1a and 2 ## **Facility-wide Fugitive Emissions (Unit FUG)** - Gas analysis - Protocol for Equipment Leak Emission Estimates from the EPA (Table 2-4) ## 2.0 PERFORMANCE OVERVIEW SUMMARY Results of the emissions test are summarized in Table 2-1 and Table 2-2 below; the site conditions are tabulated in Table 2-3: Test Conditions and Operational Data. Emissions rates and factors were calculated using the methods discussed in Section 5 – Emissions Calculations. **Table 2-1: Customer and Source Summary** | TEST | INFORMATION | | | | | |-----------------------|---|--|--|--|--| | Test Prepared For | IACX Energy
5400 LBJ Freeway, Suite 460
Dallas, TX 75240 | | | | | | Responsible Contact | David Rowland
Phone: 575-513-0572
Email: davidrowland@iacxroswell.com | | | | | | Test Location | RedBluff#3 | | | | | | Unit Number | 867 | | | | | | Test Date | Oct 10, 2019 | | | | | | Source | Waukesha L7042GSIU | | | | | | Source Serial Number | 350138 | | | | | | Site Rated Horsepower | 1195 | | | | | | Source Purpose | Compressor | | | | | | Permit Number | P073R2M1 | | | | | | Hour Meter Reading | 167385 | | | | | **Table 2-2: Test Results** | | TEST F | RESULTS AND U | NIT OPERATIONA | AL DATA | | |------------------------|------------|---------------|----------------|----------|----------| | Parameter | Units | Average | Run 1 | Run 2 | Run 3 | | Fuel Consumption | (sft³/hr) | 7,283.98 | 7,299.42 | 7,285.64 | 7,266.87 | | O2 Percentage | % | 0.21 | 0.20 | 0.21 | 0.21 | | Adjusted O2 Percentage | % | 0.02 | 0.03 | 0.02 | 0.02 | | Exhaust Flow Rate | (dsft³/hr) | 66,790.82 | 67495.23 | 67406.56 | 67231.02 | | Engine Power | (bhp) | 967.80 | 1,044.43 | 1,045.63 | 813.33 | | Engine Load | % | 80.99 | 87.40 | 87.50 | 68.06 | | Speed | RPM | 874.33 | 874.00 | 875.00 | 874.00 | | Parameter | Permitted | Average | Run 1 | Run 2 | Run 3 | | CO | | | | | | | ppmvd | | 332.68 | 397.93 | 337.74 | 262.37 | | ppm at 15% O2 | | 93.79 | 112.24 | 95.19 | 73.95 | | Ib/MMBTU HHV | | 0.21 | 0.25 | 0.21 | 0.17 | | g/bhp-hr | | 0.77 | 0.84 | 0.71 | 0.71 | | lb/hr | 2.30 | 1.62 | 1.94 | 1.64 | 1.27 | | ton/yr | | 7.08 | 8.49 | 7.19 | 5.57 | | NOx | | | | | | | ppmvd | | 379.91 | 324.37 | 369.19 | 446.15 | | ppm at 15% O2 | | 107.10 | 91.49 | 104.06 | 125.76 | | Ib/MMBTU HHV | | 0.40 | 0.34 | 0.39 | 0.47 | | g/bhp-hr | | 1.44 | 1.13 | 1.28 | 1.98 | | lb/hr | 5.30 | 3.03 | 2.59 | 2.95 | 3.55 | | ton/yr | | 13.28 | 11.37 | 12.90 | 15.55 | **Table 2-3: Test Conditions and Operational Data** | | | TEST | RUN TIMES | | | | | | | | |----------------------|-------|------------|------------------|----------|----------|--|--|--|--|--| | | | | Run 1 | Run 2 | Run 3 | | | | | | | | | Start Time | 17:50:54 | 18:16:19 | 18:42:24 | | | | | | | | | End Time | 18:11:54 | 18:37:19 | 19:03:24 | | | | | | | SITE CONDITIONS | | | | | | | | | | | | Parameter | Units | Average | Run 1 | Run 2 | Run 3 | | | | | | | Ambient Temperature | F | 77.00 | 75.00 | 77.00 | 79.00 | | | | | | | Humidity | % | 32.00 | 30.00 | 34.00 | 32.00 | | | | | | | Barometric Pressure | "Hg | 30.01 | 30.01 | 30.01 | 30.01 | | | | | | | | | ENG | SINE DATA | | | | | | | | | Manifold Pressure | PSIg | 7.00 | 7.00 | 7.00 | 7.00 | | | | | | | Speed | RPM | 874.33 | 874.00 | 875.00 | 874.00 | | | | | | | Intake Manifold Temp | °F | 110.33 | 110.00 | 109.00 | 112.00 | | | | | | ## 2.0 PERFORMANCE OVERVIEW SUMMARY Results of the emissions test are summarized in Table 2-1 and Table 2-2 below; the site conditions are tabulated in Table 2-3: Test Conditions and Operational Data. Emissions rates and factors were calculated using the methods discussed in Section 5 – Emissions Calculations. **Table 2-1: Customer and Source Summary** | TEST | INFORMATION | |-----------------------|---| | Test Prepared For | IACX Energy
5400 LBJ Freeway, Suite 460
Dallas, TX 75240 | | Responsible Contact | David Rowland Phone: 575-513-0572 Email: davidrowland@iacxroswell.com | | Test Location | Red Bluff #3 | | Unit Number | 868 | | Test Date | Dec 16, 2019 | | Source | Waukesha L7042GSIU | | Source Serial Number | 23528/A | | Site Rated Horsepower | 1195 | | Source Purpose | Compressor | | Permit Number | P073R2M1 | | Hour Meter Reading | 4749 | **Table 2-2: Test Results** | | TEST F | RESULTS AND U | NIT OPERATIONA | L DATA | | |------------------------|------------|---------------|----------------|----------|----------| | Parameter | Units | Average | Run 1 | Run 2 | Run 3 | | Fuel Consumption | (sft³/hr) | 8,100.76 | 8,179.75 | 8,076.87 | 8,045.66 | | O2 Percentage | % | 0.06 | 0.06 | 0.06 | 0.06 | | Adjusted O2 Percentage | % | 0.00 | 0.00 | 0.00 | 0.00 | | Exhaust Flow Rate | (dsft³/hr) | 74,201.41 | 75132.42 | 74186.68 | 73901.48 | | Engine Power | (bhp) | 879.44 | 889.66 | 876.34 | 872.32 | | Engine Load | % | 73.59 | 74.45 | 73.33 | 73.00 | | Speed | RPM | 884.67 | 886.00 | 884.00 | 884.00 | | Parameter | Permitted | Average | Run 1 | Run 2 | Run 3 | | CO | | | | | | | ppmvd | | 259.58 | 285.83 | 237.10 | 255.81 | | ppm at 15% O2 | | 73.10 | 80.50 | 66.77 | 72.04 | | Ib/MMBTU HHV | | 0.16 | 0.18 | 0.15 | 0.16 | | g/bhp-hr | | 0.72 | 0.79 | 0.66 | 0.71 | | lb/hr | 2.30 | 1.40 | 1.56 | 1.28 | 1.37 | | ton/yr | | 6.14 | 6.82 | 5.59 | 6.01 | | NOx | | | | | | | ppmvd | | 39.68 | 42.22 | 38.86 | 37.95 | | ppm at 15% O2 | | 11.17 | 11.89 | 10.94 | 10.69 | | Ib/MMBTU HHV | | 0.04 | 0.04 | 0.04 | 0.04 | | g/bhp-hr | | 0.18 | 0.19 | 0.18 | 0.17 | | lb/hr | 5.30 | 0.35 | 0.38 | 0.34 | 0.33 | | ton/yr | | 1.54 | 1.66 | 1.50 | 1.46 | **Table 2-3: Test Conditions and Operational Data** | | | TEST | RUN TIMES | | | | | | | | | |---|------|------------|-----------|----------|----------|--|--|--|--|--|--| | | | | Run 1 | Run 2 | Run 3 | | | | | | | | | | Start Time | 13:36:00 | 14:01:00 | 14:26:00 | | | | | | | | | | End Time | 13:57:00 | 14:22:00 | 14:47:00 | | | | | | | | SITE CONDITIONS | | | | | | | | | | | | | Parameter Units Average Run 1 Run 2 Run 3 | | | | | | | | | | | | | Ambient Temperature | F | 50.00 | 50.00 | 50.00 | 50.00 | | | | | | | | Humidity | % | 50.00 | 50.00 | 50.00 | 50.00 | | | | | | | | Barometric Pressure | "Hg | 30.00 | 30.00 | 30.00 | 30.00 | | | | | | | | ENGINE DATA | | | | | | | | | | | | | Ignition Timing | BTDC | 24.00 | 24.00 | 24.00 | 24.00 | | | | | | | | Speed | RPM | 884.67 | 886.00 | 884.00 | 884.00 | | | | | | | VHP® Series Gas Engine Extender Series® 987 - 1480 BHP (736 - 1104 kWb) ## **Specifications** Cylinders: V12 **Piston Displacement:** 7040 cu. in. (115 L) **Bore & Stroke:** 9.375" x 8.5" (238 x 216 mm) Compression Ratio: 8:1 Jacket Water System Capacity: 100 gal. (379 L) Lube Oil Capacity: 190 gal. (719 L) Starting System: 125 - 150 psi air/gas 24V electric Dry Weight: 21,000 lb. (9525 kg) **AIR CLEANER** – Two, 3" dry type filter with hinged rain shield and service indicator **AIR FUEL RATIO CONTROL (AFR)** – Integrated ESM® - AFR catalyst rich-burn control, main fuel gas regulator actuators, exhaust 02 sensor(s), and post turbocharger exhaust thermocouple. Factory mounted and tested. AFR maintains emissions through load and speed changes. The ESM AFR meets Canadian Standards Association Class 1, Division 2, Group A, B, C & D (Canada & US) hazardous location requirements. Note: For dual fuel applications, ESM AFR system will control the primary fuel source only. **BARRING DEVICE** – Manual. **BATTERY BOX** – Ship loose battery box designed to accommodate two Series 31 12 VDC batteries. Includes power disconnect switch and 20 foot (6.1 m) cable for connection to ESM® Power Distribution Box. BEARINGS - Heavy duty, replaceable, precision type. **BREATHER** – Self
regulating, closed system. $\begin{cal}CONNECTING RODS-\end{cal}-Drop\ forged\ steel,\ rifle\ drilled.$ CONTROL SYSTEM – Waukesha Engine System Manager (ESM®) integrates spark timing control, speed governing, detonation detection, start-stop control, diagnostic tools, fault logging and engine safeties. Engine Control Unit (ECU) is central brain of the control system and main customer interface. Interface with ESM is through 25 foot (7.6 m) harness to local panel, through MODBUS RTU slave connection RS-485 multidrop hardware, and through the Electronic Service Program (ESP). Customer connections are only required to the local panel, fuel valve, and 24V DC power supply. Compatible with Woodward load sharing module. ESM meets Canadian Standards Association Class I, Division 2, Group A, B, C & D (Canada & US) hazardous location requirements. **CRANKCASE** – Integral crankcase and cylinder frame. Main bearing caps drilled and tapped for temperature sensors. Does not include sensors. **CRANKSHAFT** – Counterweighted, forged steel, seven main bearings, and **CYLINDERS** – Removable wet type bainitic cast iron cylinder liners, chrome plated on outer diameter. **CYLINDER HEADS** – Twelve interchangeable. Two hard faced intake and two hard faced exhaust valves per cylinder. Hard faced intake and exhaust valve seat inserts. Roller valve lifters and hydraulic push rods. **ELECTRONIC SERVICE PROGRAM (ESP)** – Microsoft® Windows-based program provided on CD-ROM for programming and interface to ESM. Includes E-Help for troubleshooting any ESM faults. Serial harness is provided for connection of a customer supplied laptop to the ECU RS-232 port. ENGINE MONITORING DEVICES — Factory mounted and wired sensors for lube oil pressure and temperature; intake manifold temperature and pressure; overspeed; and jacket water temperature; all accessible through ESM®. ESM continually monitors combustion performance through accelerometers to provide detonation protection. Dual magnetic pick-ups are used for accurate engine speed monitoring. ESM provides predictive spark plug diagnostics as well as advanced diagnostics of engine and all ESM sensors and logs any faults into non-volatile flash memory. Sensors meet Canadian Standards Association Class 1, Division 2, Group A, B, C, & D (Canada & US) hazardous location requirements. Image may not be an accurate representation of this model **ENGINE ROTATION** – Counterclockwise when facing flywheel. **EXHAUST OUTLET** – Single vertical at rear. Flexible stainless steel connection with 8" (203 mm) pipe flange. $\label{eq:flywheel} \begin{array}{l} \textbf{FLYWHEEL} - \text{Approx. WR}^2 = 155000 \text{ lb-in}^2; \text{ with ring gear (208 teeth), machined} \\ \text{to accept two drive adapters: } 31.88" (810 \text{ mm}) \text{ pilot bore, } 30.25" (768 \text{ mm}) \text{ bolt circle, } (12) 0.75"-10 \text{ tapped holes; or } 28.88" (734 \text{ mm}) \text{ pilot bore, } 27.25" (692 \text{ mm}) \text{ bolt circle, } (12) 0.625"-11 \text{ tapped holes and } (12) 0.75"-10 \text{ tapped holes.} \end{array}$ FLYWHEEL HOUSING - No. 00 SAE. **FUEL SYSTEM** – Single 3" ANSI flange fuel inlet connection. Two natural gas, 4" (102 mm) updraft carburetors and two mounted Fisher 99, 2" (51 mm) gas regulators, 30 – 60 psi (207 – 414 kPa) fuel inlet pressure required. 10 foot (3 m) harness provided for ESM control of customer supplied fuel shutoff valve. **GOVERNOR** – Electric throttle actuator controlled by ESM with throttle position feedback. Governor tuning is performed using ESP. ESM includes option of a load-coming feature to improve engine response to step loads. **IGNITION** – Ignition Power Module (IPM) controlled by ESM, with spark timing. Dual voltage energy levels automatically controlled by ESM to maximize spark plug life. **INTERCOOLER** – Air–to–water. #### **LEVELING BOLTS** **LIFTING EYES** – Requires 9.5 ton Working Load Limit (W.L.L.) anchor shackles. **LUBRICATION** – Full pressure, gear type pump. Engine mounted full flow lube oil micro-fiberglass filters with mounted differential pressure gauge. MICROSPIN® bypass filter, engine mounted. Air/gas motor driven prelube pump, requires final piping. MANIFOLDS - Exhaust, (2) water cooled. **OIL COOLER** – Shell and tube type, with thermostatic temperature controller and pressure regulating valve. Factory mounted. OIL PAN – Deep sump type. 190 gallon (719 L) capacity including filter and cooler. **PAINT** – Oilfield orange primer. **PISTONS** – Aluminum with floating pin. Oil cooled. SHIPPING SKID - For domestic truck or rail. TURBOCHARGERS – Two dry type. Wastegate controlled. **VIBRATION DAMPER** – Viscous type. Guard included with remote mounted radiator or no radiator. WATER CIRCULATING SYSTEM, AUXILIARY CIRCUIT — Belt driven water circulating high capacity pump for intercooler and lube oil cooler. See S6543-36 performance curve for use with standard 10" diameter crankshaft pulley. **WATER CIRCULATING SYSTEM, ENGINE JACKET** – Belt driven water circulating pump, cluster type thermostatic temperature regulating valve, full flow bypass type. Flange connections and mating flanges for (2) 4" (102 mm) inlets and (1) 5" (127 mm) outlet. ## POWER RATINGS: L7042GSI VHP Series Gas Engines | | | | | Brake Horsepower (kWb Output)
130°F (54°C) I.C. Water Temperature | | | | | | | | |----------|------|---------------------------|--------------|--|--------|-------------|--------|-------|--------|-------|-------| | | | | Displ. cu. | Displ. cu. 1200 RPM 1000 RPM 900 RPM | | PM 1000 RPM | | RPM | 800 | RPM | | | Model | C.R. | Bore & Stroke in. (mm) | in. (litres) | C | - 1 | C | 1 | C | 1 | C | - 1 | | L7042GSI | 8:1 | 9.375" x 8.5" (238 x 216) | 7040 (115) | 1480 | 1834 | 1233 | 1528 | 1110 | 1376 | 987 | 1223 | | | | | | (1104) | (1368) | (920) | (1139) | (828) | (1026) | (736) | (912) | | | | 1200 | rpm | 1000 | rpm | |------------------------------|--|--------------|--------------|--------------|--------------| | | | C | 1 | С | T. | | | Power bhp (kWb) | 1480 (1104) | 1834 (1368) | 1233 (919) | 1528 (1139) | | | BSFC (LHV) Btu/bhp-hr (kJ/kWh) | 7696 (10774) | 7457 (10550) | 7458 (10553) | 7225 (10222) | | | Fuel Consumption Btu/hr x 1000 (kW) | 11390 (3304) | 13677 (4009) | 9196 (2694) | 11040 (3234) | | s | NOx g/bhp-hr (mg/nm 3 @ 5% O_2) | 13.00 (4815) | 13.00 (4815) | 13.00 (4815) | 13.00 (4815) | | Emissions | CO g/bhp-hr (mg/nm 3 @ 5% 2) | 9.00 (3333) | 9.00 (3333) | 9.00 (3333) | 9.00 (3333) | | in is | THC g/bhp-hr (mg/nm³ @ 5% 0 ₂) | 2.00 (741) | 2.00 (741) | 2.00 (741) | 2.00 (741) | | ш | NMHC g/bhp-hr (mg/nm 3 @ 5% O_2) | 0.30 (111) | 0.30 (111) | 0.30 (111) | 0.30 (111) | | | Heat to Jacket Water Btu/hr x 1000 (kW) | 3526 (1033) | 4125 (1209) | 2908 (852) | 3380 (991) | | t
Se | Heat to Lube Oil Btu/hr x 1000 (kW) | 352 (103) | 382 (112) | 310 (91) | 338 (99) | | Heat
Balance | Heat to Intercooler Btu/hr x 1000 (kW) | 228 (67) | 403 (118) | 118 (35) | 212 (62) | | ± 8 | Heat to Radiation Btu/hr x 1000 (kW) | 662 (194) | 681 (200) | 584 (171) | 611 (179) | | | Total Exhaust Heat Btu/hr x 1000 (kW) | 3281 (962) | 3705 (1086) | 2482 (728) | 2880 (844) | | e/
ist | Induction Air Flow scfm (Nm³/hr) | 2275 (3496) | 2650 (3993) | 1836 (2822) | 2140 (3224) | | Intake/
Exhaust
System | Exhaust Flow lb/hr (kg/hr) | 10124 (4592) | 12070 (5475) | 8173 (3707) | 9745 (4421) | | = ₹ ⊗ | Exhaust Temperature °F (°C) | 1126 (608) | 1145 (618) | 1056 (569) | 1096 (591) | Typical heat data is shown, however no guarantee is expressed or implied. Consult your Dresser Waukesha Application Engineering Department for system application assistance. All natural gas engine ratings are based on a fuel of 900 Btu/ft³ (35.3 MJ/nm³) SLHV, with a 91 WKI®. For conditions or fuels other than standard, consult the Dresser Waukesha Application Engineering Department. Data based on standard conditions of 77°F (25°C) ambient temperature, 29.53 inches Hg (100kPa) barometric pressure, 30% relative humidity (0.3 inches HG / 1 kPa water vapor pressure). Fuel consumption based on ISO3046/1-1995 with a tolerance of +5% for commercial quality natural gas having a 900 BTU/ft³ (35.3 MJ/nm³) SLHV. Heat data based on fuel consumption +2%. Heat rejection based on cooling exhaust temperature to 77°F (25°C). Rating Standard: All models - Ratings are based on ISO 3046/1-1986 with mechanical efficiency of 90% and Tcra (clause 10.1) as specified above limited to \pm 10° F (5° C). Ratings are also valid for SAE J1349, BS5514, DIN6271 and AP17B-11C standard atmospheric conditions. - C = ISO Standard Power/Continuous Power Rating: The highest load and speed which can be applied 24 hours per day, seven days per week, 365 days per year except for normal maintenance. It is permissible to operate the engine at up to 10% overload, or a maximum load indicated by the intermittent rating, whichever is lower, for two hours in every 24 hour period. - I = Intermittent Service Rating: The highest load and speed that can be applied in variable speed mechanical system application only. Operation at this rating is limited to a maximum of 3500 hours per year. Consult your local Waukesha representative for system application assistance. The manufacturer reserves the right to change or modify without notice, the design or equipment specifications as herein set forth without incurring any obligation either with respect to equipment previously sold or in the process of construction except where otherwise specifically quaranteed by the manufacturer. #### Dresser, Inc. Dresser Waukesha 1101 West St. Paul Avenue Waukesha, WI 53188-4999 T. 262 547 3311 F. 262 549 2795 JOHNSON MATTHEY ELOSSION CONTROL EQUIPMENT SPECIFICATION AND DESCRIPTE Units, WEDGE FM 19987 Tel: (10.911_)100 Fec. (10.911_)116 | AGAVE ENERGY | | | | | Date " \$/1004 | - 1 |
--|--------------|--|-----------------------|----------------------|--|-----| | | | Embrico Data | | | | ı | | Jenifer Knowiton | | | | | Company Compan | - | | ENGINE DATA | | Rich Burn | <u></u> | | | - 1 | | Engine Mfg. | | | Wankesha | | | - 1 | | Engine Model: | | | 7042081 | | | | | Stret: | | | 1078 | | | - 1 | | RPAC | | | 100% | | | 1 | | Lout: | | | Natural Gas | | | 1 | | [Temp into Cambyst, °F: | | | 10-80 | | * | 1 | | Operating Hours, hrafyr. | | | 8760 | | | - 1 | | ENGINE PREFORMANCE | | | 1 | | | | | Exhaust Flow, actin. | | | 1574 | | | | | Exhaust Flow, selfor
Exhaust Flow, selfor | | | 94421 | | | | | Edition Flow, Behr: | | | 7118 | | | 1 | | Exhaust MW: | | | 28.6 | | | | | TYPICAL (Rich Burn) | WW | | | | | 1 | | Ar, Pol %: | 19.9 | | 79.70 | | | - 1 | | H2, vot 1/4: | 28.0 | | 00.0 | | | - 1 | | OZ, vol %:
H2O, vol%: | 32.0
18.0 | | 10.00 | | | 1 | | CO2, vol K: | 44.0 | | 10.50 | | | 1 | | EMSSIONS DATA | | | FRE | POST | % Reduction | - 1 | | NOx as NO2, g/Bhp-hr. | - | | 13.00 | 2.00 | 84.6% | | | NON as NO2, lb/hr: | | | 30.90 | 4.75 | | | | NOx as NO2, tons/yr: | | | 135.35 | 20.82 | | | | NOx as NO2, ppmv: | | | 2,700.78 | 415.50 | | | | NOx as NO2, ppmvd @ | 15%0 | 72: | 860.86 | 132.44 | | | | CO, g/Bhp-hr: | | | 9,00 | 2.00 | 77.8% | | | CO, lb/hr: | | | 21.39 | 4.75 | | | | | | | 93,70 | 20,82 | | 1 | | CO, tons/yr: | | | 3,071.76 | 682.61 | | | | CO, ppmv: | | | 979.11 | 217.58 | | | | CO. ppmvd @ 15% O2: | | | 2.00 | 1.00 | 50,0% | | | THC 43 CH4, g/Bhp-hr. | | | 4.75 | 2.38 | | 1 | | THC as CH4, lb/hr: | | | 20.82 | 10.41 | | | | THC as CH4, tons/yr: | | | 1,194,57 | 597.29 | | | | THC as CH4, ppmv: | | | 380.77 | 190.38 | | | | THC as CH4, ppmvd @ | | 72: | 0.30 | 0.15 | 50.0% | | | NMHC as CH4, g/Bhp-h | r: | | 0.71 | 0.36 | 50.070 | | | NMHC as CH4, lb/hr: | | | | 1.56 | | | | NMHC as CH4, tons/yr. | | | 3.12 | | | | | NMHC as CH4, ppmv: | | | 179.19 | 89.59 | - | | | NMHC as CH4, ppmvd | @ 15% | 02: | 57.11 | 28.56 | | | | | | | | | 1 | | | SCOPE OF SUPPLY | | | | QXC44-1Z | 4 | | | fature Line Size (extra) | | | 1 | CHUrai | 1 | | | Agramation has | | | | E201-1 | 1 | | | Drawing reference.
Secured (e): | | | | 1 | 1 | | | Housias: | | | 1 | Curbea | 1 | | | Back Presents estimated (Inches HIRL) | | | | | 7 | | | O. W. Kannsterr, Engine Industries | | | ba:281-383-659 | | | | | English endocent dissentatives in someoni dissen
(seppies construit in the embessi of 0.2%-0.) | | | | | | | | | | | | | | | | Minimum operating temperature (SI degram
what the cogics is operating as the constitu-
tionarity US accords from this of allowed | | A AND REAL PARKS AND | DA AND DESCRIPTION OF | specification for co | stalytic operation. | | | Table I Englan Rich burn | | | | | Laboure Matthey | | | | | | | | | | TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a | Pollutant | Emission Factor
(lb/10 ⁶ scf) | Emission Factor Rating | |--|---|------------------------| | CO ₂ ^b | 120,000 | A | | Lead | 0.0005 | D | | N ₂ O (Uncontrolled) | 2.2 | Е | | N ₂ O (Controlled-low-NO _X burner) | 0.64 | Е | | PM (Total) ^c | 7.6 | D | | PM (Condensable) ^c | 5.7 | D | | PM (Filterable) ^c | 1.9 | В | | SO_2^d | 0.6 | A | | TOC | 11 | В | | Methane | 2.3 | В | | VOC | 5.5 | С | a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds. ^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb/} 10^6 \text{ scf}$. ^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train. ^d Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf. Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES $^{\rm a}$ (SCC 2-02-002-53) | Pollutant | Emission Factor (lb/MMBtu) ^b (fuel input) | Emission Factor
Rating | |------------------------------------|--|---------------------------| | Criteria Pollutants and Greenhous | se Gases | | | NO _x c 90 - 105% Load | 2.21 E+00 | A | | NO _x c <90% Load | 2.27 E+00 | С | | CO ^c 90 - 105% Load | 3.72 E+00 | A | | CO ^c <90% Load | 3.51 E+00 | С | | CO_2^{d} | 1.10 E+02 | A | | SO ₂ ^e | 5.88 E-04 | A | | TOC^{f} | 3.58 E-01 | С | | Methane ^g | 2.30 E-01 | С | | VOCh | 2.96 E-02 | С | | PM10 (filterable) ^{i,j} | 9.50 E-03 | Е | | PM2.5 (filterable) ^j | 9.50 E-03 | Е | | PM Condensable ^k | 9.91 E-03 | Е | | Trace Organic Compounds | | | | 1,1,2,2-Tetrachloroethane | 2.53 E-05 | С | | 1,1,2-Trichloroethane ¹ | <1.53 E-05 | E | | 1,1-Dichloroethane | <1.13 E-05 | Е | | 1,2-Dichloroethane | <1.13 E-05 | Е | | 1,2-Dichloropropane | <1.30 E-05 | Е | | 1,3-Butadiene ^l | 6.63 E-04 | D | | 1,3-Dichloropropene ¹ | <1.27 E-05 | Е | | Acetaldehyde ^{l,m} | 2.79 E-03 | С | | Acrolein ^{1,m} | 2.63 E-03 | С | | Benzene | 1.58 E-03 | В | | Butyr/isobutyraldehyde | 4.86 E-05 | D | | Carbon Tetrachloride ¹ | <1.77 E-05 | E | Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES (Concluded) | Pollutant | Emission Factor
(lb/MMBtu) ^b
(fuel input) | Emission Factor
Rating | |---------------------------------|--|---------------------------| | Chlorobenzene | <1.29 E-05 | Е | | Chloroform | <1.37 E-05 | Е | | Ethane ⁿ | 7.04 E-02 | С | | Ethylbenzene ¹ | <2.48 E-05 | E | | Ethylene Dibromide ^l | <2.13 E-05 | Е | | Formaldehyde ^{l,m} | 2.05 E-02 | A | | Methanol ¹ | 3.06 E-03 | D | | Methylene Chloride ^l | 4.12 E-05 | C | | Naphthalene | <9.71 E-05 | Е | | PAH ^l | 1.41 E-04 | D | | Styrene ¹ | <1.19 E-05 | E | | Toluene | 5.58 E-04 | A | | Vinyl Chloride ^l | <7.18 E-06 | Е | | Xylene ^l | 1.95 E-04 | A | Reference 7. Factors represent uncontrolled levels. For NO_x , CO, and PM-10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds.
PM10 = Particulate Matter \leq 10 microns (μ m) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit. b Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA Method 19. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from (lb/MMBtu) to (lb/hp-hr) use the following equation: lb/hp-hr = db/MMBtu, heat input, MMBtu/hr, d1/operating HP, 1/hp ^c Emission tests with unreported load conditions were not included in the data set. ^d Based on 99.5% conversion of the fuel carbon to CO₂. CO₂ [lb/MMBtu] = (3.67)(%CON)(C)(D)(1/h), where %CON = percent conversion of fuel carbon to CO₂, ## Bloomberg Environment # Environment & Safety Resource Center[™] Federal Environment and Safety Codified Regulations TITLE 40—Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING SUBPART A—General Provision ## Table A-1 to Subpart A of Part 98 —Global Warming Potentials [100-Year Time Horizon] | Name | CAS No. | Chemical formula | Global warming potential (100 yr.) | |---------------------------------------|---------------------|--|------------------------------------| | | Chemical-Specific (| GWPs | | | Carbon dioxide | 124-38-9 | CO ₂ | 1 | | Methane | 74-82-8 | CH ₄ | ^a 25 | | Nitrous oxide | 10024-97-2 | N ₂ O | ^a 298 | | | Fully Fluorinated G | GHGs | | | Sulfur hexafluoride | 2551-62-4 | SF ₆ | ^a 22,800 | | Trifluoromethyl sulphur pentafluoride | 373-80-8 | SF ₅ CF ₃ | 17,700 | | Nitrogen trifluoride | 7783-54-2 | NF ₃ | 17,200 | | PFC-14 (Perfluoromethane) | 75-73-0 | CF ₄ | ^a 7,390 | | PFC-116 (Perfluoroethane) | 76-16-4 | C ₂ F ₆ | ^a 12,200 | | PFC-218 (Perfluoropropane) | 76-19-7 | C ₃ F ₈ | ^a 8,830 | | Perfluorocyclopropane | 931-91-9 | C-C ₃ F ₆ | 17,340 | | PFC-3-1-10 (Perfluorobutane) | 355-25-9 | C ₄ F ₁₀ | ^a 8,860 | | PFC-318 (Perfluorocyclobutane) | 115-25-3 | C-C ₄ F ₈ | ^a 10,300 | | PFC-4-1-12 (Perfluoropentane) | 678-26-2 | C ₅ F ₁₂ | ^a 9,160 | | PFC-5-1-14 (Perfluorohexane, FC-72) | 355-42-0 | C ₆ F ₁₄ | ^a 9,300 | | PFC-6-1-12 | 335-57-9 | C ₇ F ₁₆ ; CF ₃ (CF ₂) ₅ CF ₃ | ^b 7,820 | | PFC-7-1-18 | 307-34-6 | C ₈ F ₁₈ ; CF ₃ (CF ₂) ₆ CF ₃ | ^b 7,620 | | PFC-9-1-18 | 306-94-5 | C ₁₀ F ₁₈ | 7,500 | | PFPMIE (HT-70) | NA | CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃ | 10,300 | | Perfluorodecalin (cis) | 60433-11-6 | Z-C ₁₀ F ₁₈ | ^b 7,236 | | Perfluorodecalin (trans) | 60433-12-7 | E-C ₁₀ F ₁₈ | ^b 6,288 | | Saturated Hydrofluorocarbon | s (HFCs) With Two | or Fewer Carbon-Hydrog | en Bonds | | HFC-23 | 75-46-7 | CHF ₃ | ^a 14,800 | | HFC-32 | 75-10-5 | CH ₂ F ₂ | ^a 675 | | HFC-125 | 354-33-6 | C ₂ HF ₅ | ^a 3,500 | | HFC-134 | 359-35-3 | C ₂ H ₂ F ₄ | ^a 1,100 | | HFC-134a | 811-97-2 | CH ₂ FCF ₃ | ^a 1,430 | | HFC-227ca | 2252-84-8 | CF ₃ CF ₂ CHF ₂ | ^b 2640 | | HFC-227ea | 431-89-0 | C ₃ HF ₇ | ^a 3,220 | |--|---|---|---| | HFC-236cb | 677-56-5 | CH ₂ FCF ₂ CF ₃ | 1,340 | | HFC-236ea | 431-63-0 | CHF ₂ CHFCF ₃ | 1,370 | | HFC-236fa | 690-39-1 | C ₃ H ₂ F ₆ | ^a 9,810 | | HFC-329p | 375-17-7 | CHF ₂ CF ₂ CF ₂ CF ₃ | ^b 2360 | | HFC-43-10mee | 138495-42-8 | CF ₃ CFHCFHCF ₂ CF ₃ | ^a 1,640 | | Saturated Hydrofluorocarbons (| (HFCs) With Thre | e or More Carbon-Hydr | ogen Bonds | | HFC-41 | 593-53-3 | CH ₃ F | a 92 | | HFC-143 | 430-66-0 | C ₂ H ₃ F ₃ | ^a 353 | | HFC-143a | 420-46-2 | C ₂ H ₃ F ₃ | ^a 4,470 | | HFC-152 | 624-72-6 | CH ₂ FCH ₂ F | 53 | | HFC-152a | 75-37-6 | CH ₃ CHF ₂ | ^a 124 | | HFC-161 | 353-36-6 | CH ₃ CH ₂ F | 12 | | HFC-245ca | 679-86-7 | C ₃ H ₃ F ₅ | ^a 693 | | HFC-245cb | 1814-88-6 | CF ₃ CF ₂ CH ₃ | ^b 4620 | | HFC-245ea | 24270-66-4 | CHF ₂ CHFCHF ₂ | ^b 235 | | HFC-245eb | 431-31-2 | CH ₂ FCHFCF ₃ | b 290 | | HFC-245fa | | CHF ₂ CH ₂ CF ₃ | 1,030 | | HFC-263fb | | CH ₃ CH ₂ CF ₃ | b 76 | | HFC-272ca | | CH ₃ CF ₂ CH ₃ | b 144 | | HFC-Z/ZCd | | | | | | | | | | HFC-365mfc | 406-58-6 | CH ₃ CF ₂ CH ₂ CF ₃ | 794 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) | 406-58-6
and Hydrochloro
Hydrogen Bon | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) W d | 794 | | HFC-365mfc | 406-58-6 and Hydrochloro Hydrogen Bon 3822-68-2 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) W d CHF ₂ OCF ₃ | 794
/ith One Carbon- | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea | 406-58-6 and Hydrochloro Hydrogen Bone 3822-68-2 2356-62-9 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) W d CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ | 794
/ith One Carbon-
14,900
1,540 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea HFE-329mcc2 | 406-58-6 and Hydrochloro Hydrogen Bond 3822-68-2 2356-62-9 134769-21-4 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) W d CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ CF ₃ CF ₂ OCF ₂ CHF ₂ | 794 /ith One Carbon- 14,900 1,540 919 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea | 406-58-6 and Hydrochloro Hydrogen Bond 3822-68-2 2356-62-9 134769-21-4 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) W d CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ | 794 /ith One Carbon- 14,900 1,540 919 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea HFE-329mcc2 | 406-58-6 and Hydrochloro Hydrogen Bon 3822-68-2 2356-62-9 134769-21-4 428454-68-6 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) W d CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ CF ₃ CF ₂ OCF ₂ CHF ₂ | 794 //ith One Carbon- 14,900 1,540 919 b 4,550 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea HFE-329mcc2 HFE-329me3 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)-propane | 406-58-6 and Hydrochloro Hydrogen Bone 3822-68-2 2356-62-9 134769-21-4 428454-68-6 3330-15-2 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) W d CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ CF ₃ CF ₂ OCF ₂ CHF ₂ CF ₃ CFHCF ₂ OCF ₃ | 794 /ith One Carbon- 14,900 1,540 919 b 4,550 b 6,490 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea HFE-329mcc2 HFE-329me3 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)-propane | 406-58-6 and Hydrochloro Hydrogen Bon 3822-68-2 2356-62-9 134769-21-4 428454-68-6 3330-15-2 HCFEs With Two | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) W d CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ CF ₃ CF ₂ OCF ₂ CHF ₂ CF ₃ CFHCF ₂ OCF ₃ CF ₃ CF ₂ CF ₂ OCHFCF ₃ | 794 //ith One Carbon- 14,900 1,540 919 b 4,550 b 6,490 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea HFE-329mcc2 HFE-329me3 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)-propane Saturated HFEs and I | 406-58-6 and Hydrochloro Hydrogen Bone 3822-68-2 2356-62-9 134769-21-4 428454-68-6 3330-15-2 HCFEs With Two (1691-17-4) | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) Wed CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ CF ₃ CF ₂ OCF ₂ CHF ₂ CF ₃ CFHCF ₂ OCF ₃ CF ₃ CF ₂ CF ₂ OCHFCF ₃ | 794 //ith One Carbon- 14,900 1,540 919 b 4,550 b 6,490 s 6,320 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea HFE-329mcc2 HFE-329me3 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)-propane Saturated HFEs and I | 406-58-6 and Hydrochloro Hydrogen Bond 3822-68-2 2356-62-9 134769-21-4 428454-68-6 3330-15-2 HCFEs With Two 1691-17-4 32778-11-3 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) W d CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ CF ₃ CF ₂ OCF ₂ CHF ₂ CF ₃ CFHCF ₂ OCF ₃ CF ₃ CF ₂ CF ₂ OCHFCF ₃ Carbon-Hydrogen Bonds CHF ₂ OCHF ₂ | 794 /ith One Carbon- 14,900 1,540 919 b 4,550 b 6,490 s 6,320 b 4,240 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea HFE-329mcc2 HFE-329me3 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)-propane Saturated HFEs and I HFE-134 (HG-00) HFE-236ca | 406-58-6 and Hydrochloro Hydrogen Bond 3822-68-2 2356-62-9 134769-21-4 428454-68-6 3330-15-2 HCFEs With Two 1691-17-4 32778-11-3 78522-47-1 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) Wed CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ CF ₃ CF ₂ OCF ₂ CHF ₂ CF ₃ CFHCF ₂ OCF ₃ CF ₃ CF ₂ CF ₂ OCHFCF ₃ Carbon-Hydrogen Bonds CHF ₂
OCHF ₂ CHF ₂ OCF ₂ CHF ₂ | 794 //ith One Carbon- 14,900 1,540 919 b 4,550 b 6,490 s 6,320 b 4,240 2,800 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea HFE-329mcc2 HFE-329me3 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)-propane Saturated HFEs and I HFE-134 (HG-00) HFE-236ca HFE-236ca12 (HG-10) | 406-58-6 and Hydrochloro Hydrogen Bond 3822-68-2 2356-62-9 134769-21-4 428454-68-6 3330-15-2 HCFEs With Two (1691-17-4 32778-11-3 78522-47-1 57041-67-5 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) Wed CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ CF ₃ CF ₂ OCF ₂ CHF ₂ CF ₃ CFHCF ₂ OCF ₃ CF ₃ CF ₂ CF ₂ OCHFCF ₃ Carbon-Hydrogen Bonds CHF ₂ OCHF ₂ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₂ CHF ₂ | 794 //ith One Carbon- 14,900 1,540 919 b 4,550 b 6,490 s 6,320 b 4,240 2,800 989 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea HFE-329mcc2 HFE-329me3 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)-propane Saturated HFEs and I HFE-134 (HG-00) HFE-236ca HFE-236ca12 (HG-10) HFE-236ea2 (Desflurane) | 406-58-6 and Hydrochloro Hydrogen Bond 3822-68-2 2356-62-9 134769-21-4 428454-68-6 3330-15-2 HCFEs With Two 1691-17-4 32778-11-3 78522-47-1 57041-67-5 20193-67-3 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) Wed CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ CF ₃ CF ₂ OCF ₂ CHF ₂ CF ₃ CFHCF ₂ OCF ₃ CF ₃ CF ₂ CF ₂ OCHFCF ₃ Carbon-Hydrogen Bonds CHF ₂ OCHF ₂ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₂ OCHFC ₃ | 794 //ith One Carbon- 14,900 1,540 919 b 4,550 b 6,490 s 6,320 b 4,240 2,800 989 487 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea HFE-329mcc2 HFE-329me3 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)-propane Saturated HFEs and I HFE-134 (HG-00) HFE-236ca HFE-236ca12 (HG-10) HFE-236ea2 (Desflurane) HFE-236fa | 406-58-6 and Hydrochloro Hydrogen Bond 3822-68-2 2356-62-9 134769-21-4 428454-68-6 3330-15-2 HCFEs With Two 1691-17-4 32778-11-3 78522-47-1 57041-67-5 20193-67-3 156053-88-2 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) Wed CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ CF ₃ CF ₂ OCF ₂ CHF ₂ CF ₃ CF ₂ CF ₂ OCHFCF ₃ Carbon-Hydrogen Bonds CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₂ OCHF ₃ | 794 //ith One Carbon- 14,900 1,540 919 b 4,550 b 6,490 s 6,320 b 4,240 2,800 989 487 552 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea HFE-329mcc2 HFE-329me3 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)-propane Saturated HFEs and I HFE-134 (HG-00) HFE-236ca HFE-236ca12 (HG-10) HFE-236fa HFE-236fa HFE-338mcf2 | 406-58-6 and Hydrochloro Hydrogen Bond 3822-68-2 2356-62-9 134769-21-4 428454-68-6 3330-15-2 HCFEs With Two (1691-17-4 32778-11-3 78522-47-1 57041-67-5 20193-67-3 156053-88-2 26103-08-2 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) Wed CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ CF ₃ CF ₂ OCF ₂ CHF ₂ CF ₃ CFHCF ₂ OCF ₃ CF ₃ CF ₂ CF ₂ OCHFCF ₃ Carbon-Hydrogen Bonds CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₃ CHF ₂ CHF ₂ OCHFCF ₃ CF ₃ CH ₂ OCHFCF ₃ CF ₃ CH ₂ OCHFCF ₃ | 794 //ith One Carbon- 14,900 1,540 919 b 4,550 b 6,490 5 6,320 b 4,240 2,800 989 487 552 380 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea HFE-329mcc2 HFE-329me3 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)-propane Saturated HFEs and I HFE-134 (HG-00) HFE-236ca HFE-236ca12 (HG-10) HFE-236fa HFE-338mcf2 HFE-338mmz1 | 406-58-6 and Hydrochloro Hydrogen Bond 3822-68-2 2356-62-9 134769-21-4 428454-68-6 3330-15-2 HCFEs With Two 1691-17-4 32778-11-3 78522-47-1 57041-67-5 20193-67-3 156053-88-2 26103-08-2 188690-78-0 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) Wed CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ CF ₃ CF ₂ OCF ₂ CHF ₂ CF ₃ CFHCF ₂ OCHFCF ₃ Carbon-Hydrogen Bonds CHF ₂ OCHF ₂ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₂ CHF ₃ CF ₃ CF ₂ OCHFCF ₃ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCH ₂ CHF ₂ CHF ₂ OCH ₂ CF ₃ CF ₃ CH ₂ OCF ₃ CF ₃ CF ₂ OCH ₂ CF ₃ CHF ₂ OCH(CF ₃) ₂ | 794 //ith One Carbon- 14,900 1,540 919 b 4,550 b 6,490 s 6,320 b 4,240 2,800 989 487 552 380 1,500 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea HFE-329mcc2 HFE-329me3 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)-propane Saturated HFEs and I HFE-134 (HG-00) HFE-236ca HFE-236ca12 (HG-10) HFE-236fa HFE-338mcf2 HFE-338mmz1 HFE-338pcc13 (HG-01) | 406-58-6 and Hydrochloro Hydrogen Bond 3822-68-2 2356-62-9 134769-21-4 428454-68-6 3330-15-2 HCFES With Two 1691-17-4 32778-11-3 78522-47-1 57041-67-5 20193-67-3 156053-88-2 26103-08-2 188690-78-0 E1730133 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) Wed CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ CF ₃ CF ₂ OCF ₂ CHF ₂ CF ₃ CFHCF ₂ OCF ₃ CF ₃ CF ₂ CF ₂ OCHFCF ₃ Carbon-Hydrogen Bonds CHF ₂ OCHF ₂ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₃ CHFCF ₃ CF ₃ CF ₂ OCHFCF ₃ CHF ₂ OCHFCF ₃ CF ₃ CH ₂ OCF ₃ CF ₃ CH ₂ OCF ₃ CF ₃ CF ₂ OCH ₂ CF ₃ CHF ₂ OCH ₂ CF ₃ CHF ₂ OCH ₂ CF ₃ CHF ₂ OCH ₂ CF ₂ CHF ₂ CHF ₂ OCH ₂ CF ₃ CHF ₂ OCH ₂ CF ₂ OCHF ₂ | 794 //ith One Carbon- 14,900 1,540 919 b 4,550 b 6,490 s 6,320 b 4,240 2,800 989 487 552 380 1,500 1,870 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea HFE-329mcc2 HFE-329me3 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)-propane Saturated HFEs and I HFE-134 (HG-00) HFE-236ca HFE-236ca12 (HG-10) HFE-236fa HFE-338mcf2 HFE-338mmz1 HFE-338pcc13 (HG-01) HFE-43-10pccc (H-Galden 1040x, HG-11) | 406-58-6 and Hydrochloro Hydrogen Bond 3822-68-2 2356-62-9 134769-21-4 428454-68-6 3330-15-2 HCFES With Two of 1691-17-4 32778-11-3 78522-47-1 57041-67-5 20193-67-3 156053-88-2 26103-08-2 188690-78-0 E1730133 13838-16-9 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) Wed CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ CF ₃ CF ₂ OCF ₂ CHF ₂ CF ₃ CFHCF ₂ OCF ₃ CF ₃ CF ₂ CF ₂ OCHFCF ₃ Carbon-Hydrogen Bonds CHF ₂ OCHF ₂ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₂ CHF ₃ CF ₃ CF ₂ OCHFCF ₃ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCHFCF ₃ CF ₃ CF ₂ OCHFCF ₃ CF ₃ CF ₂ OCHFCF ₃ CF ₃ CF ₂ OCH ₂ CF ₃ CHF ₂ OCH ₂ CF ₃ CHF ₂ OCH ₂ CF ₃ CHF ₂ OCH ₂ CF ₂ OCHF ₂ CHF ₂ OCF ₂ CF ₂ OCHF ₂ | 794 //ith One Carbon- 14,900 1,540 919 b 4,550 b 6,490 s 6,320 b 4,240 2,800 989 487 552 380 1,500 1,870 b 583 | | HFC-365mfc Saturated Hydrofluoroethers (HFEs) HFE-125 HFE-227ea HFE-329mcc2 HFE-329me3 1,1,1,2,2,3,3-Heptafluoro-3-(1,2,2,2-tetrafluoroethoxy)-propane Saturated HFEs and I HFE-134 (HG-00) HFE-236ca HFE-236ca12 (HG-10) HFE-236fa HFE-338mcf2 HFE-338mmz1 HFE-338pcc13 (HG-01) HFE-43-10pccc (H-Galden 1040x, HG-11) HCFE-235ca2 (Enflurane) | 406-58-6 and Hydrochloro Hydrogen Bond 3822-68-2 2356-62-9 134769-21-4 428454-68-6 3330-15-2 HCFEs With Two 1691-17-4 32778-11-3 78522-47-1 57041-67-5 20193-67-3 156053-88-2 26103-08-2 188690-78-0 E1730133 13838-16-9 26675-46-7 | CH ₃ CF ₂ CH ₂ CF ₃ fluoroethers (HCFEs) Wed CHF ₂ OCF ₃ CF ₃ CHFOCF ₃ CF ₃ CF ₂ OCF ₂ CHF ₂ CF ₃ CF ₄ CF ₂ OCHFCF ₃ Carbon-Hydrogen Bonds CHF ₂ OCHF ₂ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₂ CHF ₃ CF ₃ CF ₂ CF ₂ OCHFCF ₃ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCF ₂ CHF ₂ CHF ₂ OCH ₂ CF ₃ CF ₃ CF ₂ OCH ₂ CF ₃ CHF ₂ OCH ₂ CF ₃ CHF ₂ OCF ₂ CH ₂ CF ₃ CHF ₂ OCF ₂ CF ₂ OCHF ₂ | 794 /ith One Carbon- 14,900 1,540 919 b 4,550 b 6,490 | |) EIII | vironinent & Salety Re | source Center | | |--|------------------------|--|--------------------| | HG-20 | 249932-25-0 | HF ₂ C-(OCF ₂) | ^b 5,300 | | HG-21 | 249932-26-1 | HF ₂ C-
OCF ₂ CF ₂ OCF ₂ OCF ₂ O-CF ₂ H | ^b 3,890 | | HG-30 | 188690-77-9 | HF ₂ C-(OCF ₂) | ^b 7,330 | | 1,1,3,3,4,4,6,6,7,7,9,9,10,10,12,12,13,13,15,
15-eicosafluoro-2,5,8,11,14-
Pentaoxapentadecane | 173350-38-4 | HCF ₂ O(CF ₂ CF ₂ O) ₄ CF ₂ H | ^b 3,630 | | 1,1,2-Trifluoro-2-(trifluoromethoxy)-ethane | 84011-06-3 | CHF ₂ CHFOCF ₃ | ^b 1,240 | | Trifluoro(fluoromethoxy)methane | 2261-01-0 | CH ₂ FOCF ₃ | ^b 751 | | Saturated HFEs and HCFEs | With Three or N | More Carbon-Hydrogen Boi | | | HFE-143a | 421-14-7 | CH ₃ OCF ₃ | 756 | | HFE-245cb2 | 22410-44-2 | CH ₃ OCF ₂ CF ₃ | 708 | | HFE-245fa1 | 84011-15-4 | CHF ₂ CH ₂ OCF ₃ | 286 | | HFE-245fa2 | 1885-48-9 | CHF ₂ OCH ₂ CF ₃ | 659 | | HFE-254cb2 | 425-88-7 | CH ₃ OCF ₂ CHF ₂ | 359 | | HFE-263fb2 | 460-43-5 | CF ₃ CH ₂ OCH ₃ | 11 | | HFE-263m1; R-E-143a | 690-22-2 | CF ₃ OCH ₂ CH ₃ | ^b 29 | | HFE-347mcc3 (HFE-7000) | 375-03-1 | CH ₃ OCF ₂ CF ₂ CF ₃ | 575 | | HFE-347mcf2 | 171182-95-9 | CF ₃ CF ₂ OCH ₂ CHF ₂ | 374 | | HFE-347mmy1 | 22052-84-2 | CH ₃ OCF(CF ₃) ₂ | 343 | | HFE-347mmz1 (Sevoflurane) | 28523-86-6 | (CF ₃) ₂ CHOCH ₂ F | ^c 216 | | HFE-347pcf2 | 406-78-0 | CHF ₂ CF ₂ OCH ₂ CF ₃ | 580 | | HFE-356mec3 | 382-34-3 | CH ₃ OCF ₂ CHFCF ₃ | 101 | | HFE-356mff2 | 333-36-8 | CF ₃ CH ₂ OCH ₂ CF ₃ | b 17 | | HFE-356mmz1 | 13171-18-1 | (CF ₃) | 27 | | HFE-356pcc3 | 160620-20-2 | CH ₃ OCF ₂ CF ₂ CHF ₂ | 110 | | HFE-356pcf2 | 50807-77-7 | CHF ₂ CH ₂ OCF ₂ CHF ₂ | 265 | | HFE-356pcf3 | 35042-99-0 | CHF ₂ OCH | 502 | | HFE-365mcf2 | 22052-81-9 | CF ₃ CF ₂ OCH ₂ CH ₃ | ^b 58 | | HFE-365mcf3 | 378-16-5 | CF ₃ CF ₂ CH ₂ OCH ₃ | 11 | | HFE-374pc2 | 512-51-6 | CH ₃ CH ₂ OCF ₂ CHF ₂ | 557 | | HFE-449s1 (HFE-7100) Chemical blend | 163702-07-6 | C ₄ F | 297 | | | 163702-08-7 | (CF ₃) | | | HFE-569sf2 (HFE-7200) Chemical blend | 163702-05-4 | | 59 | | | | (CF ₃) ₂ CFCF ₂ OC ₂ H ₅ | | | HG'-01 | 73287-23-7 | CH ₃ OCF ₂ CF ₂ OCH ₃ | ^b 222 | | HG'-02 | 485399-46-0 | $CH_3O(CF_2CF_2O)_2CH_3$ | ^b 236 | | HG'-03 | 485399-48-2 | $CH_3O(CF_2CF_2O)$ | ^b 221 | | Difluoro(methoxy)methane | 359-15-9 | CH ₃ OCHF ₂ | ^b 144 | | 2-Chloro-1,1,2-trifluoro-1-methoxyethane | 425-87-6 | CH ₃ OCF ₂ CHFCI | ^b 122 | | 1-Ethoxy-1,1,2,2,3,3,3-heptafluoropropane | 22052-86-4 | CF ₃ CF ₂ CF ₂ OCH ₂ CH ₃ | ^b 61 | | 2-Ethoxy-3,3,4,4,5-pentafluorotetrahydro-
2,5-
bis[1,2,2,2-tetrafluoro-1- | 920979-28-8 | C ₁₂ H ₅ F ₁₉ O ₂ | ^b 56 | | | I | | | | D = [1] | viioninent & Salety Re | Source Cerner | | |--|------------------------
--|------------------| | (trifluoromethyl)ethyl]-
furan | | | | | 1-Ethoxy-1,1,2,3,3,3-hexafluoropropane | 380-34-7 | CF ₃ CHFCF | b 23 | | Fluoro(methoxy)methane | 460-22-0 | CH ₃ OCH ₂ F | b 13 | | 1,1,2,2-Tetrafluoro-3-methoxy-propane;
Methyl 2,2,3,3-tetrafluoropropyl ether | 60598-17-6 | CHF ₂ CF ₂ CH ₂ OCH ₃ | ^b 0.5 | | 1,1,2,2-Tetrafluoro-1-(fluoromethoxy)ethane | 37031-31-5 | CH ₂ FOCF ₂ CF ₂ H | ^b 871 | | Difluoro(fluoromethoxy)methane | 461-63-2 | CH ₂ FOCHF ₂ | ^b 617 | | Fluoro(fluoromethoxy)methane | 462-51-1 | CH ₂ FOCH ₂ F | b 130 | | FI | uorinated Form | _ | | | Trifluoromethyl formate | 85358-65-2 | HCOOCF ₃ | ^b 588 | | Perfluoroethyl formate | 313064-40-3 | HCOOCF ₂ CF ₃ | ^b 580 | | 1,2,2,2-Tetrafluoroethyl formate | 481631-19-0 | HCOOCHFCF ₃ | ^b 470 | | Perfluorobutyl formate | 197218-56-7 | HCOOCF ₂ CF ₂ CF ₂ CF ₃ | ^b 392 | | Perfluoropropyl formate | 271257-42-2 | HCOOCF ₂ CF ₂ CF ₃ | ^b 376 | | 1,1,1,3,3,3-Hexafluoropropan-2-yl formate | 856766-70-6 | HCOOCH(CF ₃) | b 333 | | 2,2,2-Trifluoroethyl formate | 32042-38-9 | HCOOCH ₂ CF ₃ | b 33 | | 3,3,3-Trifluoropropyl formate | 1344118-09-7 | HCOOCH ₂ CH ₂ CF ₃ | b 17 | | F | luorinated Aceta | ates | | | Methyl 2,2,2-trifluoroacetate | 431-47-0 | CF ₃ COOCH ₃ | ^b 52 | | 1,1-Difluoroethyl 2,2,2-trifluoroacetate | 1344118-13-3 | CF ₃ COOCF ₂ CH ₃ | b 31 | | Difluoromethyl 2,2,2-trifluoroacetate | 2024-86-4 | CF ₃ COOCHF ₂ | b 27 | | 2,2,2-Trifluoroethyl 2,2,2-trifluoroacetate | 407-38-5 | CF ₃ COOCH ₂ CF ₃ | b 7 | | Methyl 2,2-difluoroacetate | 433-53-4 | HCF ₂ COOCH ₃ | b 3 | | Perfluoroethyl acetate | 343269-97-6 | CH ₃ COOCF ₂ CF ₃ | b 2.1 | | Trifluoromethyl acetate | 74123-20-9 | CH ₃ COOCF ₃ | b 2.0 | | Perfluoropropyl acetate | 1344118-10-0 | CH ₃ COOCF ₂ CF ₂ CF ₃ | b 1.8 | | Perfluorobutyl acetate | 209597-28-4 | CH ₃ COOCF ₂ CF ₂ CF ₂ CF ₃ | b 1.6 | | Ethyl 2,2,2-trifluoroacetate | 383-63-1 | CF ₃ COOCH ₂ CH ₃ | b 1.3 | | | -
Carbonofluorida | tes | | | Methyl carbonofluoridate | 1538-06-3 | FCOOCH ₃ | b 95 | | 1,1-Difluoroethyl carbonofluoridate | 1344118-11-1 | FCOOCF ₂ CH ₃ | b 27 | | Fluorinated Alcoho | ls Other Than Fl | uorotelomer Alcohols | | | Bis(trifluoromethyl)-methanol | 920-66-1 | (CF ₃) ₂ CHOH | 195 | | (Octafluorotetramethy-lene) hydroxymethyl group | NA | X-(CF ₂) ₄ CH(OH)-X | 73 | | 2,2,3,3,3-Pentafluoropropanol | 422-05-9 | CF ₃ CF ₂ CH ₂ OH | 42 | | 2,2,3,3,4,4,4-Heptafluorobutan-1-ol | 375-01-9 | C ₃ F ₇ CH2OH | ^b 25 | | 2,2,2-Trifluoroethanol | 75-89-8 | CF ₃ CH ₂ OH | ^b 20 | | 2,2,3,4,4,4-Hexafluoro-1-butanol | 382-31-0 | CF ₃ CHFCF ₂ CH ₂ OH | b 17 | | 2,2,3,3-Tetrafluoro-1-propanol | 76-37-9 | CHF ₂ CF ₂ CH ₂ OH | b 13 | | 2,2-Difluoroethanol | 359-13-7 | CHF ₂ CH2OH | b 3 | | 2-Fluoroethanol | 371-62-0 | CH ₂ FCH ₂ OH | b 1.1 | | | | <u> </u> | | | The similarity of the | oodioo oontoi | | |------------------------------|---|---| | 461-18-7 | CF ₃ (CH ₂) | b 0.05 | | | | | | 116-14-3 | $CF_2=CF_2$; C_2F_4 | b 0.004 | | 116-15-4 | C_3F_6 ; $CF_3CF=CF_2$ | b 0.05 | | 559-40-0 | c-C ₅ F ₈ | ^b 1.97 | | 360-89-4 | CF ₃ CF=CFCF ₃ | ^b 1.82 | | 357-26-6 | CF ₃ CF ₂ CF=CF ₂ | b 0.10 | | 685-63-2 | CF ₂ =CFCF=CF ₂ | b 0.003 | | ns (HFCs) and H | ydrochlorofluorocarbons | (HCFCs) | | 75-38-7 | C ₂ H | ^b 0.04 | | 75-02-5 | C ₂ H | ^b 0.02 | | 5595-10-8 | CF ₃ CF=CHF(E) | b 0.06 | | 5528-43-8 | CF ₃ CF=CHF(Z) | ^b 0.22 | | 102687-65-0 | C ₃ H ₂ ClF ₃ ; CHCl=CHCF ₃ | ^b 1.34 | | 754-12-1 | C ₃ H ₂ F ₄ ; CF ₃ CF=CH ₂ | b 0.31 | | 1645-83-6 | C ₃ H ₂ F ₄ ; trans-CF ₃ CH=CHF | | | 29118-25-0 | C ₃ H ₂ F ₄ Cis-CF ₃ CH=CHF;
CF ₃ CH=CHF | b 0.29 | | 677-21-4 | C ₃ H ₃ F ₃ , CF ₃ CH=CH ₂ | b 0.12 | | 692-49-9 | $CF_3CH=CHCF_3(Z)$ | b 1.58 | | 374-27-6 | C ₂ F ₅ CH=CH ₂ | b 0.09 | | 19430-93-4 | C ₆ H ₃ F ₉ , CF ₃ (CF ₂) | b 0.16 | | 25291-17-2 | $C_8H_3F_{13}$,
$CF_3(CF_2)_5CH=CH_2$ | b 0.11 | | 21652-58-4 | C ₁₀ H ₃ F ₁₇ ,
CF ₃ (CF ₂) ₇ CH=CH ₂ | b 0.09 | | rated Halogenat | ed Ethers | | | 1187-93-5 | CF ₃ OCF=CF ₂ | ^b 0.17 | | 406-90-6 | CF ₃ CH ₂ OCH=CH ₂ | ^b 0.05 | | uorinated Aldeh | ydes | | | 460-40-2 | CF ₃ CH ₂ CHO | b 0.01 | | luorinated Keto | nes | | | | | b 0.1 | | _ | | | | | | b 0.43 | | | | b 0.35 | | | 0. 2.0 | b 0.33 | | 87017-97-8 | CF ₃ (CF ₂) ₈ CH ₂ CH ₂ OH | ^b 0.19 | | | | | | HGs With Carbor
2314-97-8 | n-Iodine Bond(s) | b 0.4 | | | 116-14-3 116-14-3 116-15-4 559-40-0 360-89-4 357-26-6 685-63-2 ns (HFCs) and H 75-38-7 75-02-5 5595-10-8 5528-43-8 102687-65-0 754-12-1 1645-83-6 29118-25-0 677-21-4 692-49-9 374-27-6 19430-93-4 25291-17-2 21652-58-4 rated Halogenat 1187-93-5 406-90-6 uorinated Keto 756-13-8 | 677-21-4 C ₃ H ₃ F ₃ , CF ₃ CH=CH ₂ 692-49-9 CF ₃ CH=CHCF ₃ (Z) 374-27-6 C ₂ F ₅ CH=CH ₂ 19430-93-4 C ₆ H ₃ F ₉ , CF ₃ (CF ₂) 25291-17-2 C ₈ H ₃ F ₁₃ , CF ₃ (CF ₂) ₅ CH=CH ₂ 21652-58-4 C ₁₀ H ₃ F ₁₇ , | | Dibromodifluoromethane (Halon 1202) | 75-61-6 CBR ₂ F ₂ | ^b 231 | |---|---|------------------| | 2-Bromo-2-chloro-1,1,1-trifluoroethane (Halon-2311/Halothane) | 151-67-7 CHBrClCF ₃ | b 41 | | Fluorinated GHG Group ^d | Global warming potential (100 yr.) | | | |---|------------------------------------|--|--| | Default GWPs for Compounds for Which Chemical-Specific GWPs Are Not Listed Above | | | | | Fully fluorinated GHGs | 10,000 | | | | Saturated hydrofluorocarbons (HFCs) with 2 or fewer carbon-hydrogen bonds | 3,700 | | | | Saturated HFCs with 3 or more carbon-hydrogen bonds | 930 | | | | Saturated hydrofluoroethers (HFEs) and hydrochlorofluoroethers (HCFEs) with 1 carbon-hydrogen bond | 5,700 | | | | Saturated HFEs and HCFEs with 2 carbon-hydrogen bonds | 2,600 | | | | Saturated HFEs and HCFEs with 3 or more carbon-hydrogen bonds | 270 | | | | Fluorinated formates | 350 | | | | Fluorinated acetates, carbonofluoridates, and fluorinated alcohols other than fluorotelomer alcohols | 30 | | | | Unsaturated perfluorocarbons (PFCs), unsaturated HFCs, unsaturated hydrochlorofluorocarbons (HCFCs), unsaturated halogenated ethers, unsaturated halogenated esters, fluorinated aldehydes, and fluorinated ketones | 1 | | | | Fluorotelomer alcohols | 1 | | | | Fluorinated GHGs with carbon-iodine bond(s) | 1 | | | | Other fluorinated GHGs | 2,000 | | | ^a The GWP for this compound was updated in the final rule published on November 29, 2013 [78 FR 71904] and effective on January 1, 2014. [78 FR page 71948, Nov. 29, 2013; 79 FR page 73779, Dec. 11, 2014] Contact us at http://www.bna.com/contact-us or call 1-800-372-1033 ## ISSN 2167-8065 Copyright © 2018, The Bureau of National Affairs, Inc. Reproduction or redistribution, in whole or in part, and in any form, without express written permission, is prohibited except as permitted by the BNA Copyright Policy. ^b This compound was added to Table A-1 in the final rule published on December 11, 2014, and effective on January 1, 2015. $^{^{\}rm c}$ The GWP for this compound was updated in the final rule published on December 11, 2014, and effective on January 1, 2015 . ^d For electronics manufacturing (as defined in § 98.90), the term "fluorinated GHGs" in the definition of each fluorinated GHG group in § 98.6 shall include fluorinated heat transfer fluids (as defined in § 98.98), whether or not they are also fluorinated GHGs. ## Bloomberg Environment ## Environment & Safety Resource Center[™] Federal Environment and Safety Codified Regulations TITLE 40—Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING SUBPART C—General Stationary Fuel Combustion Sources Table C-1 to Subpart C of Part 98 —Default CO₂ Emission Factors and High Heat Values for Various Types of Fuel | Fuel type | Default high heat value | Default CO ₂ emission factor | |--|--------------------------|---| | Coal and coke | mmBtu/short ton | kg CO ₂ /mmBtu | | Anthracite | 25.09 | 103.69 | | Bituminous | 24.93 | 93.28 | | Subbituminous | 17.25 | 97.17 | | Lignite | 14.21 | 97.72 | | Coal Coke | 24.80 | 113.67 | | Mixed (Commercial sector) | 21.39 | 94.27 | | Mixed (Industrial coking) | 26.28 | 93.90 | | Mixed (Industrial sector) | 22.35 | 94.67 | | Mixed (Electric Power sector) | 19.73 | 95.52 | | Natural gas | mmBtu/scf | kg CO ₂ /mmBtu | | (Weighted U.S. Average) | 1.026 x 10 ⁻³ | 53.06 | | Petroleum products—liquid | mmBtu/gallon | kg CO ₂ /mmBtu | | Distillate Fuel Oil No. 1 | 0.139 | 73.25 | | Distillate Fuel Oil No. 2 | 0.138 | 73.96 | | Distillate Fuel Oil No. 4 | 0.146 | 75.04 | | Residual Fuel Oil No. 5 | 0.140 | 72.93 | | Residual Fuel Oil No. 6 | 0.150 | 75.10 | | Used Oil | 0.138 | 74.00 | | Kerosene | 0.135 | 75.20 | | Liquefied petroleum gases (LPG) ¹ | 0.092 | 61.71 | | Propane ¹ | 0.091 | 62.87 | | Propylene ² | 0.091 | 67.77 | | Ethane ¹ | 0.068 | 59.60 | | Ethanol | 0.084 | 68.44 | | Ethylene ² | 0.058 | 65.96 | |
Isobutane ¹ | 0.099 | 64.94 | | Isobutylene ¹ | 0.103 | 68.86 | | Butane ¹ | 0.103 | 64.77 | | Butylene ¹ | 0.105 | 68.72 | | Naphtha (<401 deg F) | 0.125 | 68.02 | | Natural Gasoline | 0.110 | 66.88 | | Other Oil (>401 deg F) | 0.139 | 76.22 | | Pentanes Plus | 0.110 | 70.02 | |--|--------------------------|---------------------------| | Petrochemical Feedstocks | 0.125 | 71.02 | | Special Naphtha | 0.125 | 72.34 | | Unfinished Oils | 0.139 | 74.54 | | Heavy Gas Oils | 0.148 | 74.92 | | Lubricants | 0.144 | 74.27 | | Motor Gasoline | 0.125 | 70.22 | | Aviation Gasoline | 0.120 | 69.25 | | Kerosene-Type Jet Fuel | 0.135 | 72.22 | | Asphalt and Road Oil | 0.158 | 75.36 | | Crude Oil | 0.138 | 74.54 | | Petroleum products—solid | mmBtu/short ton | kg CO ₂ /mmBtu | | Petroleum Coke | 30.00 | 102.41 | | Petroleum products—gaseous | mmBtu/scf | kg CO ₂ /mmBtu | | Propane Gas | 2.516 x 10 ⁻³ | 61.46 | | Other fuels—solid | mmBtu/short ton | kg CO ₂ /mmBtu | | Municipal Solid Waste | 9.95 ³ | 90.7 | | Tires | 28.00 | 85.97 | | Plastics | 38.00 | 75.00 | | Other fuels—gaseous | mmBtu/scf | kg CO ₂ /mmBtu | | Blast Furnace Gas | 0.092 x 10 ⁻³ | 274.32 | | Coke Oven Gas | 0.599 x 10 ⁻³ | 46.85 | | Fuel Gas ⁴ | 1.388 x 10 ⁻³ | 59.00 | | Biomass fuels—solid | mmBtu/short ton | kg CO ₂ /mmBtu | | Wood and Wood Residuals (dry basis) ⁵ | 17.48 | 93.80 | | Agricultural Byproducts | 8.25 | 118.17 | | Peat | 8.00 | 111.84 | | Solid Byproducts | 10.39 | 105.51 | | Biomass fuels—gaseous | mmBtu/scf | kg CO ₂ /mmBtu | | Landfill Gas | 0.485 x 10 ⁻³ | 52.07 | | Other Biomass Gases | 0.655 x 10 ⁻³ | 52.07 | | Biomass Fuels—Liquid | mmBtu/gallon | kg CO ₂ /mmBtu | | Ethanol | 0.084 | 68.44 | | Biodiesel (100%) | 0.128 | 73.84 | | Rendered Animal Fat | 0.125 | 71.06 | | | | | ¹ The HHV for components of LPG determined at 60 °F and saturation pressure with the exception of ethylene. ² Ethylene HHV determined at 41 °F (5 °C) and saturation pressure. ³ Use of this default HHV is allowed only for: (a) Units that combust MSW, do not generate steam, and are allowed to use Tier 1; (b) units that derive no more than 10 percent of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year. ⁴ Reporters subject to subpart X of this part that are complying with § 98.243(d) or subpart Y of this part may only use the default HHV and the default CO_2 emission factor for fuel gas combustion under the conditions prescribed in § 98.243(d)(2)(i) and (d)(2)(ii) and § 98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4. # Bloomberg Environment ## Environment & Safety Resource Center[™] Federal Environment and Safety Codified Regulations TITLE 40—Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING SUBPART C—General Stationary Fuel Combustion Sources # Table C-2 to Subpart C of Part 98 —Default CH_4 and N_2O Emission Factors for Various Types of Fuel | Fuel type | Default CH ₄ emission factor (kg CH ₄ /mmBtu) | Default N ₂ O emission factor
(kg N ₂ O/mmBtu) | |---|---|---| | Coal and Coke (All fuel types in Table C-1) | 1.1 x 10 ⁻⁰² | 1.6 x 10 ⁻⁰³ | | Natural Gas | 1.0×10^{-03} | 1.0×10^{-04} | | Petroleum Products (All fuel types in Table C-1) | 3.0 x 10 ⁻⁰³ | 6.0 x 10 ⁻⁰⁴ | | Fuel Gas | 3.0×10^{-03} | 6.0×10^{-04} | | Other Fuels—Solid | 3.2 x 10 ⁻⁰² | 4.2 x 10 ⁻⁰³ | | Blast Furnace Gas | 2.2 x 10 ⁻⁰⁵ | 1.0×10^{-04} | | Coke Oven Gas | 4.8×10^{-04} | 1.0×10^{-04} | | Biomass Fuels—Solid (All fuel types in Table C-1, except wood and wood residuals) | 3.2 x 10 ⁻⁰² | 4.2 x 10 ⁻⁰³ | | Wood and wood residuals | 7.2×10^{-03} | 3.6×10^{-03} | | Biomass Fuels—Gaseous (All fuel types in Table C-1) | 3.2 x 10 ⁻⁰³ | 6.3 x 10 ⁻⁰⁴ | | Biomass Fuels—Liquid (All fuel types in Table C-1) | 1.1×10^{-03} | 1.1×10^{-04} | Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1q of CH₄ /mmBtu. [75 FR page 79154, Dec. 17, 2010; 78 FR page 71952, Nov. 29, 2013; 81 FR page 89252, Dec. 9, 2016] Contact us at http://www.bna.com/contact-us or call 1-800-372-1033 #### ISSN 2167-8065 Copyright © 2018, The Bureau of National Affairs, Inc. Reproduction or redistribution, in whole or in part, and in any form, without express written permission, is prohibited except as permitted by the BNA Copyright Policy. Athens, TX (903) 677-0700 . Beeville, TX (361) 354-5200 . Midland, TX (432) 704-5351 ### **GAS EXTENDED ANALYSIS REPORT** LAB REPORT NUMBER: 190812-1020-08-081219-02_8_12_2019 4_14_01 PM #### **PHYSICAL CONSTANTS PER GPA 2145-16** | CUSTOMER: | IACX | DATE SAMPLED: | 08/08/2019 | |-----------|-----------------|-----------------|------------| | STATION: | 37636 | DATE ANALYZED: | 08/12/2019 | | PRODUCER: | IACX | EFFECTIVE DATE: | 08/01/2019 | | LEASE: | RB #3 NRU INLET | | | | COMPONENT | MOLE % | <u>GPM</u> | <u>WT. %</u> | |-----------------|--------------|---------------|--------------| | HELIUM | 0.404 | | 0.087 | | H2S | 0.000 | | 0.000 | | OXYGEN | 0.037 | | 0.064 | | NITROGEN | 5.920 | | 8.960 | | CARBON DIOXIDE | 0.029 | | 0.069 | | METHANE | 86.251 | | 74.760 | | ETHANE | 4.280 | 1.141 | 6.953 | | PROPANE | 1.669 | 0.458 | 3.978 | | I-BUTANE | 0.268 | 0.087 | 0.842 | | N-BUTANE | 0.556 | 0.175 | 1.746 | | I-PENTANE | 0.165 | 0.060 | 0.643 | | N-PENTANE | 0.173 | 0.062 | 0.674 | | HEXANE PLUS | <u>0.248</u> | <u>0.100</u> | <u>1.224</u> | | TOTAL | 100.000 | 2.083 | 100.000 | | | | | | | DEAL OD CDAVITY | 0.6400 | DEAL DELL DOV | 1040 057 | | REAL SP. GRAVITY | 0.6402 | REAL BTU DRY | 1040.657 | |------------------|--------|--------------|----------| | MOL. WT. | 18.508 | REAL BTU SAT | 1022.445 | | Z FACTOR | 0.9977 | PRESS BASE | 14.650 | | C2+ GPM | 2.083 | C4+ GPM | 0.484 | | C3+ GPM | 0.942 | C5+ GPM | 0.222 | | SAMPLED BY | RA | SAMPLE PRESS: | 110 | |---------------|-----------|-----------------|-----| | SAMPLE TYPE: | COMPOSITE | SAMPLE TEMP: | 100 | | CYLINDER NO.: | 5064 | COUNTY / STATE: | 0 | COMMENT: COMPOSITE ANALYST MIKE HOBGOOD ^{*} SEE NEXT PAGE FOR C6+ COMPOSITIONAL BREAKDOWN PAGE 1 OF 3 08-14-2019 STATION: 37636 # **C6+ FRACTION COMPOSITION** | HEXANE ISOMERS (C6'S) | | MOLE % | GPM | <u>WT. %</u> | |-----------------------------------|--------|--------|-------|--------------| | 2,2-Dimethylbutane | Р | 0.013 | 0.005 | 0.059 | | 2,3-Dimethylbutane | PN | 0.000 | 0.000 | 0.000 | | 2-Methylpentane | P | 0.050 | 0.000 | 0.232 | | 3-Methylpentane | '
Р | 0.030 | 0.021 | 0.232 | | Methylcyclopentane | N | 0.030 | 0.005 | 0.069 | | Benzene | A | 0.000 | 0.000 | 0.000 | | Cyclohexane | N | 0.002 | 0.000 | 0.008 | | n-Hexane | P | 0.072 | 0.029 | 0.333 | | | • | 0.072 | 0.020 | 0.000 | | HEPTANE ISOMERS (C7'S) | | | | | | 3,3-Dimethylpentane | Р | 0.000 | 0.000 | 0.000 | | 2,2-Dimethylpentane | Р | 0.003 | 0.001 | 0.016 | | 2,4-Dimethylpentane | Р | 0.003 | 0.001 | 0.014 | | 2 & 3-Methylhexane | Р | 0.001 | 0.001 | 0.006 | | 2,3-Dimethylpentane | Р | 0.001 | 0.000 | 0.005 | | 1,t-3-Dimethylcyclopentane | N | 0.000 | 0.000 | 0.000 | | 1,c-3-Dimethylcyclopentane | N | 0.000 | 0.000 | 0.000 | | 3-Ethylpentane | N | 0.000 | 0.000 | 0.000 | | 1,t-2-Dimethylcyclopentane | N | 0.000 | 0.000 | 0.000 | | Toluene | Α | 0.000 | 0.000 | 0.002 | | Methylcyclohexane | N | 0.017 | 0.007 | 0.089 | | Ethylcyclopentane | N | 0.000 | 0.000 | 0.000 | | n-Heptane | Р | 0.017 | 0.008 | 0.094 | | OCTANE ISOMERS (C8'S) | | | | | | 2,4 & 2,5-Dimethylhexane | Р | 0.001 | 0.000 | 0.003 | | 2,2,4-Trimethylpentane | N | 0.000 | 0.000 | 0.000 | | 1,t-2,c-4-Trimethylcyclopentane | N | 0.000 | 0.000 | 0.000 | | 1,t-2,c-3-Trimethylcyclopentane | N | 0.000 | 0.000 | 0.000 | | 2-Methylheptane | Р | 0.002 | 0.001 | 0.010 | | 1,c-2,t-4-Trimethylcyclopentane | N | 0.000 | 0.000 | 0.000 | | 3-Methylheptane | Р | 0.003 | 0.001 | 0.018 | | 1,c-3-Dimethylcyclohexane | N | 0.000 | 0.000 | 0.000 | | 1,t-4-Dimethylcyclohexane | N | 0.000 | 0.000 | 0.000 | | methyl-ethylcyclopentanes | N | 0.000 | 0.000 | 0.000 | | 1,t-3 & 1,c-4 Dimethylcyclohexane | N | 0.001 | 0.000 | 0.004 | | 1,c-2-Dimethylcyclohexane | N | 0.003 | 0.001 | 0.000 | | Ethylcyclohexane | N | 0.002 | 0.001 | 0.010 | | Ethylbenzene | Α | 0.001 | 0.000 | 0.006 | | m & p-Xylene | Α | 0.001 | 0.000 | 0.006 | | o-Xylene | Α | 0.001 | 0.000 | 0.004 | | Cyclooctane | Р | 0.001 | 0.000 | 0.003 | | n-Octane | Р | 0.004 | 0.002 | 0.025 | Athens, TX (903) 677-0700 . Beeville, TX (361) 354-5200 . Midland, TX (432) 704-5351 **STATION**: 37636 LEASE: RB #3 NRU INLET ## **C6+ FRACTION COMPOSITION** | NONANE ISOMERS (C9'S) | | MOLE % | GPM | WT. % | |---|----|--------|-------|-------| | Trimethylhexanes | Р | 0.000 | 0.000 | 0.000 | | Dimethylpentanes | Р | 0.000 | 0.000 | 0.000 | | Isopropylcyclopentane | N | 0.000 | 0.000 | 0.000 | | n-Propylcyclopentane | N | 0.000 | 0.000 | 0.000 | | 3-Methyloctane | Р | 0.000 | 0.000 | 0.000 | | Trimethylcyclohexanes | N | 0.000 | 0.000 | 0.000 | | Isopropylbenzene | Α | 0.000 | 0.000 | 0.003 | | Isopropylcyclohexane | N | 0.000 | 0.000 | 0.000 | | n-Propylcyclohexane | N | 0.001 | 0.000 | 0.004 | | n-Propyllbenzene | Α | 0.001 | 0.000 | 0.005 | | m-Ethyltoluene | Α | 0.000 | 0.000 | 0.000 | | p-Ethyltoluene | Α | 0.000 | 0.000 | 0.000 | |
1,3,5-Trimethylbenzene | Α | 0.000 | 0.000 | 0.001 | | 4 & 5-Methylnonane | Р | 0.000 | 0.000 | 0.000 | | o-Ethyltoluene & 3-Methylnonane | AP | 0.000 | 0.000 | 0.000 | | 1,2,3-Trimethylbenzene | Α | 0.000 | 0.000 | 0.000 | | n-Nonane | Р | 0.001 | 0.001 | 0.008 | | DECANE ISOMERS (C10'S) | | | | | | 2-Methylnonane | Р | 0.000 | 0.000 | 0.000 | | tert-Butylbenzene | Α | 0.000 | 0.000 | 0.000 | | 1,2,4-Trimethylbenzene | Α | 0.000 | 0.000 | 0.002 | | Isobutylcyclohexane & tert-Butylcyclohexane | | 0.000 | 0.000 | 0.000 | | Isobutylbenzene | Α | 0.000 | 0.000 | 0.000 | | sec-Butylbenzene | Α | 0.000 | 0.000 | 0.002 | | n-Butylcyclohexane | N | 0.000 | 0.000 | 0.003 | | 1,3-Diethylbenzene | Α | 0.000 | 0.000 | 0.000 | | 1,2-Diethylbenzene & n-Butylbenzene | Α | 0.000 | 0.000 | 0.000 | | 1,4-Diethylbenzene | Α | 0.000 | 0.000 | 0.000 | | n-Decane | Р | 0.003 | 0.002 | 0.019 | | UNDECANE ISOMERS (C11'S) | | | | | | n-Undecane | Р | 0.000 | 0.000 | 0.000 | | DODECANE ISOMERS (C12'S) | | | | | | n-Dodecane + | Р | 0.000 | 0.000 | 0.000 | X Michael Gobzood Page 3 of 3 #### GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT Case Name: Red Bluff v01 File Name: P:\1. CLIENTS\IACX\PROJECT\Red Bluff 3 Compressor Station\193201.0231 IACX RB3 NSR Sig Rev\06 CALCULATIONS\Red Bluff GLYCalc.ddf Date: March 17, 2020 #### DESCRIPTION: Description: Annual Hours of Operation: 8760.0 hours/yr #### EMISSIONS REPORTS: ----- #### CONTROLLED REGENERATOR EMISSIONS | Component | lbs/hr | lbs/day | tons/yr | |--|--|---|--| | Methane
Ethane
Propane
Isobutane
n-Butane | 0.0163
0.0117
0.0191
0.0065
0.0161 | | 0.0835 | | Isopentane
n-Pentane
n-Hexane
Cyclohexane
Other Hexanes | 0.0046
0.0047
0.0023
0.0002
0.0034 | 0.110
0.112
0.056
0.006
0.082 | 0.0201
0.0204
0.0101
0.0011
0.0150 | | Heptanes
Methylcyclohexane
Toluene
Ethylbenzene
Xylenes | 0.0014
0.0018
0.0002
0.0005
0.0007 | 0.033
0.043
0.005
0.011
0.018 | 0.0061
0.0078
0.0009
0.0020
0.0033 | | C8+ Heavies | <0.0001 | 0.001

2.149 | 0.0002 | | Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions | 0.0895
0.0615
0.0037
0.0014 | 2.149 | 0.3921
0.3921
0.2694
0.0164
0.0062 | #### UNCONTROLLED REGENERATOR EMISSIONS |
 | | | | |---|--|--|--| | Component | lbs/hr | lbs/day | tons/yr | |
Methane
Ethane
Propane
Isobutane
n-Butane | 0.1659
0.1287
0.2888
0.1380
0.4189 | 3.982
3.088
6.930
3.312
10.054 | 0.7267
0.5636
1.2648
0.6044
1.8349 | | Isopentane
n-Pentane
n-Hexane
Cyclohexane
Other Hexanes | 0.2208
0.3212
0.4001
0.0576
0.4161 | 5.300
7.708
9.602
1.382
9.985 | 0.9672
1.4067
1.7524
0.2522
1.8223 | | Heptanes | 0.7379 | 17.709 | 3.2319 | | Methylcyclohexane
Toluene
Ethylbenzene
Xylenes | 0.8859
0.2090
0.9918
2.2233 | 21.261
5.015
23.804
53.360 | Page: 2
3.8802
0.9152
4.3442
9.7382 | |---|--|--|---| | C8+ Heavies | 4.0517 | 97.240 | 17.7463 | | Total Emissions | 11.6555 | 279.732 | 51.0511 | | Total Hydrocarbon Emissions
Total VOC Emissions
Total HAP Emissions
Total BTEX Emissions | 11.6555
11.3609
3.8242
3.4241 | 279.732
272.662
91.781
82.179 | 51.0511
49.7608
16.7500
14.9976 | #### FLASH GAS EMISSIONS | Component | lbs/hr | lbs/day | tons/yr | |-----------------------------|---------|---------|---------| | Methane | 6.0618 | 145.483 | 26.5507 | | Ethane | 1.2881 | 30.913 | 5.6417 | | Propane | 1.2319 | | | | Isobutane | 0.3762 | 9.030 | 1.6479 | | n-Butane | 0.8546 | 20.509 | 3.7429 | | Isopentane | 0.3821 | 9.171 | 1.6737 | | n-Pentane | 0.4354 | 10.451 | 1.9073 | | n-Hexane | 0.2885 | 6.923 | 1.2635 | | Cyclohexane | 0.0108 | | | | Other Hexanes | 0.4040 | 9.695 | 1.7694 | | Heptanes | 0.2506 | 6.014 | 1.0976 | | Methylcyclohexane | 0.1251 | 3.002 | 0.5479 | | Toluene | 0.0030 | 0.072 | 0.0132 | | Ethylbenzene | | | | | Xylenes | 0.0118 | 0.284 | 0.0519 | | C8+ Heavies | 0.1196 | 2.870 | 0.5238 | | Total Emissions | 11.8514 | 284.433 | 51.9091 | | Total Hydrocarbon Emissions | 11.8514 | 284.433 | 51.9091 | | Total VOC Emissions | 4.5015 | 108.037 | 19.7167 | | Total HAP Emissions | 0.3112 | 7.470 | 1.3632 | | Total BTEX Emissions | 0.0228 | 0.546 | 0.0997 | #### FLASH TANK OFF GAS | Component | lbs/hr | lbs/day | tons/yr | |-------------------|---------|---------|---------| | Methane | 12.1236 | 290.966 | 53.1013 | | Ethane | 2.5761 | 61.827 | 11.2834 | | Propane | 2.4638 | 59.131 | 10.7915 | | Isobutane | 0.7525 | 18.059 | 3.2958 | | n-Butane | 1.7091 | 41.019 | 7.4859 | | Isopentane | 0.7643 | 18.342 | 3.3475 | | n-Pentane | 0.8709 | 20.902 | 3.8145 | | n-Hexane | 0.5769 | 13.846 | 2.5270 | | Cyclohexane | 0.0216 | 0.517 | 0.0944 | | Other Hexanes | 0.8080 | 19.391 | 3.5388 | | Heptanes | 0.5012 | 12.028 | 2.1951 | | Methylcyclohexane | 0.2502 | 6.005 | 1.0959 | | Toluene | 0.0060 | 0.144 | 0.0264 | | Ethylbenzene | 0.0158 | 0.380 | 0.0693 | | Xylenes | 0.0237 | 0.569 | 0.1038 | | C8+ Heavies | 0.2392 | 5.741 | 1.0477 | |--|---------------------------------------|---------------------------------------|---| | Total Emissions | 23.7028 | 568.867 | 103.8182 | | Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions | 23.7028
9.0031
0.6225
0.0455 | 568.867
216.074
14.939
1.093 | 103.8182
39.4335
2.7264
0.1994 | #### COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS | Component | lbs/hr | lbs/day | tons/yr | |--|---------|---------|---------| | Methane | 6.0781 | 145.874 | 26.6220 | | Ethane | 1.2998 | 31.195 | 5.6931 | | Propane | 1.2510 | 30.023 | 5.4792 | | Isobutane | 0.3827 | 9.185 | 1.6763 | | n-Butane | 0.8707 | 20.896 | 3.8136 | | Isopentane | 0.3867 | 9.281 | 1.6938 | | n-Pentane | 0.4401 | 10.562 | 1.9276 | | n-Hexane | 0.2908 | 6.979 | 1.2736 | | Cyclohexane | 0.0110 | 0.264 | 0.0483 | | Other Hexanes | 0.4074 | 9.777 | 1.7844 | | Heptanes | 0.2520 | 6.047 | 1.1037 | | Methylcyclohexane | 0.1269 | 3.045 | 0.5557 | | Toluene | 0.0032 | 0.077 | 0.0141 | | Ethylbenzene | 0.0084 | 0.201 | 0.0367 | | Xylenes | 0.0126 | 0.302 | 0.0552 | | C8+ Heavies | 0.1196 | 2.871 | 0.5240 | | Total Emissions Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions | 11.9409 | 286.582 | 52.3012 | | | 11.9409 | 286.582 | 52.3012 | | | 4.5630 | 109.513 | 19.9861 | | | 0.3150 | 7.559 | 1.3796 | | | 0.0242 | 0.580 | 0.1059 | #### COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT: ------ | Component | Uncontrolled tons/yr | Controlled
tons/yr | % Reduction | |---|----------------------|-----------------------|-------------| | Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane Other Hexanes Heptanes Methylcyclohexane | 53.8280 | 26.6220 | 50.54 | | | 11.8470 | 5.6931 | 51.94 | | | 12.0563 | 5.4792 | 54.55 | | | 3.9002 | 1.6763 | 57.02 | | | 9.3208 | 3.8136 | 59.09 | | | 4.3147 | 1.6938 | 60.74 | | | 5.2213 | 1.9276 | 63.08 | | | 4.2793 | 1.2736 | 70.24 | | | 0.3466 | 0.0483 | 86.08 | | | 5.3612 | 1.7844 | 66.72 | | | 5.4270 | 1.1037 | 79.66 | | | 4.9761 | 0.5557 | 88.83 | | Toluene | 0.9416 | 0.0141 | 98.50 | | Ethylbenzene | 4.4135 | 0.0367 | 99.17 | | Xylenes | 9.8419 | 0.0552 | 99.44 | | C | 8+ Heavies | 18.7940 | 0.5240 | Page: 4
97.21 | |------------|------------------------|--------------------------------|------------------------------|-------------------------| | Total | Emissions | 154.8693 | 52.3012 | 66.23 | | Total HAP | Emissions
Emissions | 154.8693
89.1943
19.4763 | 52.3012
19.9861
1.3796 | 66.23
77.59
92.92 | | Total BTEX | Emissions | 15.1970 | 0.1059 | 99.30 | EQUIPMENT REPORTS: #### CONDENSER AND COMBUSTION DEVICE Condenser Outlet Temperature: 80.00 deg. F Condenser Pressure: 14.70 psia Condenser Duty: 3.64e-003 MM BTU/hr Hydrocarbon Recovery: 0.87 bbls/day Produced Water: 1.91 bbls/day Ambient Temperature: 80.00 deg. F Excess Oxygen: 5.00 % Combustion Efficiency: 90.00 % Supplemental Fuel Requirement: 3.64e-003 MM BTU/hr | Component | Emitted | Destroyed | |-------------------|---------|-----------| | Methane | 9.82% | 90.18% | | Ethane | 9.12% | 90.88% | | Propane | 6.60% | 93.40% | | Isobutane | 4.71% | 95.29% | | n-Butane | 3.85% | 96.15% | | Isopentane | 2.07% | 97.93% | | n-Pentane | 1.45% | 98.55% | | n-Hexane | 0.58% | 99.42% | | Cyclohexane | 0.42% | 99.58% | | Other Hexanes | 0.82% | 99.18% | | Heptanes | 0.19% | 99.81% | | Methylcyclohexane | 0.20% | 99.80% | | Toluene | 0.10% | 99.90% | | Ethylbenzene | 0.05% | 99.95% | | Xylenes | 0.03% | 99.97% | | C8+ Heavies | 0.00% | 100.00% | #### ABSORBER Calculated Absorber Stages: Specified Dry Gas Dew Point: 1.34 7.00 lbs. H2O/MMSCF 110.0 deg. F 650.0 psig Temperature: Pressure: Dry Gas Flow Rate: 6.5000 MMSCF/day Glycol Losses with Dry Gas:
0.1028 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 109.68 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 3.23 gal/lb H2O | | Remaining | Absorbed | |-----------|------------|-----------| | Component | in Dry Gas | in Glycol | | | | | | | | F | age: 5 | |-------------------|--------|--------|--------| | Water | 6.37% | 93.63% | | | Carbon Dioxide | 99.78% | 0.22% | | | Nitrogen | 99.98% | 0.02% | | | Methane | 99.98% | 0.02% | | | Ethane | 99.94% | 0.06% | | | Propane | 99.91% | 0.09% | | | Isobutane | 99.87% | 0.13% | | | n-Butane | 99.83% | 0.17% | | | Isopentane | 99.83% | 0.17% | | | n-Pentane | 99.78% | 0.22% | | | n-Hexane | 99.65% | 0.35% | | | Cyclohexane | 98.48% | 1.52% | | | Other Hexanes | 99.73% | 0.27% | | | Heptanes | 99.36% | 0.64% | | | Methylcyclohexane | 98.31% | 1.69% | | | Toluene | 83.80% | 16.20% | | | Ethylbenzene | 77.99% | 22.01% | | | Xylenes | 70.50% | 29.50% | | | C8+ Heavies | 96.92% | 3.08% | | | | | | | #### FLASH TANK Flash Control: Combustion device Flash Control Efficiency: 50.00 % Flash Temperature: 110.0 deg. F Flash Pressure: 60.0 psig | Component | Left in
Glycol | Removed in Flash Gas | |-------------------|-------------------|----------------------| | Water | 99.91% | 0.09% | | Carbon Dioxide | 15.47% | 84.53% | | Nitrogen | 1.27% | 98.73% | | Methane | 1.35% | 98.65% | | Ethane | 4.76% | 95.24% | | Propane | 10.49% | 89.51% | | Isobutane | 15.50% | 84.50% | | n-Butane | 19.69% | 80.31% | | Isopentane | 22.64% | 77.36% | | n-Pentane | 27.17% | 72.83% | | n-Hexane | 41.17% | 58.83% | | Cyclohexane | 73.57% | 26.43% | | Other Hexanes | 34.44% | 65.56% | | Heptanes | 59.72% | 40.28% | | Methylcyclohexane | 78.80% | 21.20% | | Toluene | 97.42% | 2.58% | | Ethylbenzene | 98.59% | 1.41% | | Xylenes | 99.08% | 0.92% | | C8+ Heavies | 95.07% | 4.93% | #### REGENERATOR No Stripping Gas used in regenerator. | | | Remaining | Distilled | |-----------|-------|-----------|-----------| | Component | | in Glycol | Overhead | | | | | | | | Water | 31.20% | 68.80% | | | | Page: | 6 | |-------------------|--------|---------|---| | Carbon Dioxide | 0.00% | 100.00% | Ü | | Nitrogen | 0.00% | 100.00% | | | Methane | 0.00% | 100.00% | | | Ethane | 0.00% | 100.00% | | | | | | | | Propane | 0.00% | 100.00% | | | Isobutane | 0.00% | 100.00% | | | n-Butane | 0.00% | 100.00% | | | Isopentane | 1.28% | 98.72% | | | n-Pentane | 1.17% | 98.83% | | | | | | | | n-Hexane | 0.90% | 99.10% | | | Cyclohexane | 4.03% | 95.97% | | | Other Hexanes | 1.99% | 98.01% | | | Heptanes | 0.70% | 99.30% | | | Methylcyclohexane | 4.74% | 95.26% | | | | | | | | Toluene | 8.06% | 91.94% | | | Ethylbenzene | 10.51% | 89.49% | | | Xylenes | 13.00% | 87.00% | | | C8+ Heavies | 12.20% | 87.80% | | #### STREAM REPORTS: ------ #### WET GAS STREAM ______ Temperature: 110.00 deg. F Pressure: 664.70 psia Flow Rate: 2.72e+005 scfh | Component | | Loading
(lb/hr) | | |---------------------------------------|---|-------------------------------------|--| | Carbon Dioxide
Nitrogen
Methane | 2.31e-001
6.89e-002
8.95e+000
7.47e+001
6.94e+000 | 2.17e+001
1.79e+003
8.57e+003 | | | Isobutane
n-Butane
Isopentane | 3.97e+000
8.41e-001
1.74e+000
6.42e-001
6.73e-001 | 3.50e+002
7.25e+002
3.32e+002 | | | Cyclohexane
Other Hexanes | 5.01e-001
2.26e-001 | 4.81e+000
3.09e+002
1.62e+002 | | | Ethylbenzene | 9.99e-003 | 4.55e+000
7.59e+000 | | | Total Components | 100.00 | 1.58e+004 | | #### DRY GAS STREAM ----- Temperature: 110.00 deg. F Pressure: 664.70 psia Flow Rate: 2.71e+005 scfh | Component | Conc. (vol%) | Loading
(lb/hr) | |---------------------------------------|---|-------------------------------------| | Carbon Dioxide
Nitrogen
Methane | 1.47e-002
6.89e-002
8.97e+000
7.48e+001
6.96e+000 | 2.17e+001
1.79e+003
8.57e+003 | | Isobutane
n-Butane
Isopentane | 3.98e+000
8.42e-001
1.75e+000
6.43e-001
6.73e-001 | 3.49e+002
7.24e+002
3.31e+002 | | Cyclohexane
Other Hexanes | 5.01e-001
2.25e-001 | 4.74e+000
3.08e+002
1.61e+002 | | Ethylbenzene | 7.06e-003 | 3.55e+000
5.35e+000 | | Total Components | 100.00 | 1.58e+004 | #### LEAN GLYCOL STREAM _____ Temperature: 110.00 deg. F Flow Rate: 1.50e+000 gpm | Component | | Loading
(lb/hr) | |--|---|-------------------------------------| | Water
Carbon Dioxide
Nitrogen | 9.84e+001
1.50e+000
5.57e-013
4.07e-012
6.14e-018 | 1.26e+001
4.70e-012
3.43e-011 | | Propane
Isobutane | 4.65e-008
5.70e-009
1.61e-009
3.58e-009
3.39e-004 | 4.80e-008
1.36e-008
3.02e-008 | | n-Hexane
Cyclohexane
Other Hexanes | | 3.62e-003
2.42e-003
8.44e-003 | | Ethylbenzene | 2.17e-003
1.38e-002
3.94e-002 | 1.83e-002
1.16e-001
3.32e-001 | | Total Components | 100.00 | 8.43e+002 | Temperature: 110.00 deg. F Pressure: 664.70 psia Flow Rate: 1.64e+000 gpm NOTE: Stream has more than one phase. | Component | Conc.
(wt%) | Loading (lb/hr) | |--|---|-------------------------------------| | Water
Carbon Dioxide
Nitrogen | 9.12e+001
4.47e+000
8.17e-003
2.85e-001
1.35e+000 | 4.06e+001
7.42e-002
2.59e+000 | | Propane
Isobutane | 2.98e-001
3.03e-001
9.80e-002
2.34e-001
1.09e-001 | 2.75e+000
8.90e-001
2.13e+000 | | n-Hexane
Cyclohexane
Other Hexanes | | 9.81e-001
8.15e-002
1.23e+000 | | Ethylbenzene | 2.57e-002
1.24e-001
2.84e-001 | 2.33e-001
1.12e+000
2.58e+000 | | Total Components | 100.00 | 9.09e+002 | #### FLASH TANK OFF GAS STREAM _____ Temperature: 110.00 deg. F Pressure: 74.70 psia Flow Rate: 4.11e+002 scfh | Component | | Loading
(lb/hr) | |---------------------------------------|---|-------------------------------------| | Carbon Dioxide
Nitrogen
Methane | 1.91e-001
1.32e-001
8.44e+000
6.98e+001
7.91e+000 | 6.27e-002
2.56e+000
1.21e+001 | | Isobutane
n-Butane
Isopentane | 5.16e+000
1.20e+000
2.72e+000
9.78e-001
1.11e+000 | 7.52e-001
1.71e+000
7.64e-001 | | Cyclohexane
Other Hexanes | 8.66e-001
4.62e-001 | 2.16e-002
8.08e-001
5.01e-001 | | Ethylbenzene | 2.06e-002 | 1.58e-002
2.37e-002 | | Total Components | 100.00 | 2.64e+001 | #### FLASH TANK GLYCOL STREAM _____ Temperature: 110.00 deg. F Flow Rate: 1.58e+000 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.40e+001 8.29e+002 Water 4.59e+000 4.05e+001 Carbon Dioxide 1.30e-003 1.15e-002 Nitrogen 3.72e-003 3.29e-002 Methane 1.88e-002 1.66e-001 Ethane 1.46e-002 1.29e-001 Propane 3.27e-002 2.89e-001 Isobutane 1.56e-002 1.38e-001 n-Butane 4.75e-002 4.19e-001 Isopentane 2.53e-002 2.24e-001 n-Pentane 3.68e-002 3.25e-001 n-Hexane 4.58e-002 4.04e-001 Cyclohexane 6.80e-003 6.00e-002 Other Hexanes 4.81e-002 4.24e-001 Heptanes 8.42e-002 7.43e-001 Methylcyclohexane 1.05e-001 9.30e-001 Toluene 2.58e-002 2.27e-001 Ethylbenzene 1.26e-001 1.11e+000 Xylenes 2.90e-001 2.56e+000 C8+ Heavies 5.23e-001 4.61e+000 Total Components 100.00 8.82e+002 #### FLASH GAS EMISSIONS ----- Flow Rate: 9.98e+002 scfh Control Method: Combustion Device Control Efficiency: 50.00 | Component | Conc. (vol%) | Loading
(lb/hr) | |---------------------------------------|---|-------------------------------------| | Carbon Dioxide
Nitrogen
Methane | 4.82e+001
2.95e+001
3.48e+000
1.44e+001
1.63e+000 | 3.41e+001
2.56e+000
6.06e+000 | | Isobutane
n-Butane
Isopentane | 1.06e+000
2.46e-001
5.59e-001
2.01e-001
2.30e-001 | 3.76e-001
8.55e-001
3.82e-001 | | Cyclohexane
Other Hexanes | 1.78e-001
9.51e-002 | 1.08e-002
4.04e-001
2.51e-001 | | Ethylbenzene | 4.24e-003 | 7.91e-003
1.18e-002 | Total Components 100.00 7.14e+001 #### REGENERATOR OVERHEADS STREAM _____ Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 6.34e+002 scfh | Component | | Loading (lb/hr) | |---------------------------------------|---|-------------------------------------| | Carbon Dioxide
Nitrogen
Methane | 9.27e+001
1.56e-002
7.02e-002
6.19e-001
2.56e-001 | 1.15e-002
3.29e-002
1.66e-001 | | Isobutane
n-Butane
Isopentane | 3.92e-001
1.42e-001
4.31e-001
1.83e-001
2.66e-001 | 1.38e-001
4.19e-001
2.21e-001 | | Cyclohexane
Other Hexanes | 2.89e-001
4.41e-001 | 5.76e-002
4.16e-001
7.38e-001 | | Ethylbenzene | 1.25e+000 | 9.92e-001
2.22e+000 | | Total Components | 100.00 | 3.96e+001 | #### CONDENSER PRODUCED WATER STREAM ----- Temperature: 80.00 deg. F Flow Rate: 5.57e-002 gpm | Component | | Loading
(lb/hr) | (ppm) | |---------------------------------------|---|-------------------------------------|----------------------------| | Carbon Dioxide
Nitrogen
Methane | 1.00e+002
1.28e-003
7.71e-005
8.20e-004
7.66e-004 | 3.56e-004
2.15e-005
2.28e-004 | | | Isobutane
n-Butane
Isopentane | 8.65e-004
1.69e-004
5.84e-004
1.24e-004 | 4.70e-005
1.63e-004
3.46e-005 | 9.
2.
6.
1. | | Cyclohexane
Other Hexanes | 7.21e-005
2.21e-005 | 1.19e-005
2.01e-005
6.17e-006 | 1.
0.
1.
0.
2. | | Ethylbenzene | 4.84e-003 | 5.77e-004
1.35e-003 | 12.
21.
48.
0. | Total Components 100.00 2.79e+001 1000000. #### CONDENSER RECOVERED OIL STREAM ----- Temperature: 80.00 deg. F Flow Rate: 2.53e-002 gpm Component Conc. Loading (wt%) (lb/hr) Water 2.05e-002 2.20e-003
Carbon Dioxide 4.02e-003 4.33e-004 Nitrogen 2.59e-003 2.79e-004 Methane 2.61e-002 2.81e-003 Ethane 1.03e-001 1.11e-002 Propane 9.10e-001 9.79e-002 Isobutane 6.78e-001 7.30e-002 n-Butane 2.39e+000 2.58e-001 Isopentane 1.63e+000 1.75e-001 n-Pentane 2.55e+000 2.75e-001 n-Hexane 3.50e+000 3.77e-001 Cyclohexane 5.13e-001 5.52e-002 Other Hexanes 3.55e+000 3.82e-001 Heptanes 6.73e+000 7.24e-001 Methylcyclohexane 8.07e+000 8.68e-001 Toluene 1.92e+000 2.07e-001 Ethylbenzene 9.17e+000 9.87e-001 Xylenes 2.06e+001 2.21e+000 C8+ Heavies 3.77e+001 4.05e+000 Total Components 100.00 1.08e+001 #### CONDENSER VENT STREAM ----- Temperature: 80.00 deg. F Pressure: 14.70 psia Flow Rate: 1.03e+001 scfh | Component | | Loading (lb/hr) | |---------------------------------------|---|-------------------------------------| | Carbon Dioxide
Nitrogen
Methane | 3.50e+000
8.98e-001
4.30e+000
3.75e+001
1.44e+001 | 1.07e-002
3.26e-002
1.63e-001 | | Isobutane
n-Butane
Isopentane | 1.60e+001
4.13e+000
1.03e+001
2.35e+000
2.38e+000 | 6.49e-002
1.61e-001
4.58e-002 | | Cyclohexane
Other Hexanes | 1.47e+000
5.13e-001 | 2.41e-003
3.42e-002
1.39e-002 | | Ethylbenzene | 8.42e-002
1.62e-001
2.60e-001 | 4.66e-003 | Total Components 100.00 9.56e-001 #### COMBUSTION DEVICE OFF GAS STREAM ----- Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 9.37e-001 scfh | Component | | Loading (lb/hr) | |--|---|-------------------------------------| | Ethane
Propane
Isobutane | 4.11e+001
1.58e+001
1.75e+001
4.52e+000
1.12e+001 | 1.17e-002
1.91e-002
6.49e-003 | | | 2.61e+000
1.09e+000
1.16e-001 | 4.65e-003
2.32e-003
2.41e-004 | | Methylcyclohexane
Toluene
Ethylbenzene | 9.22e-002 | 1.77e-003
2.10e-004
4.66e-004 | | C8+ Heavies Total Components | | 3.57e-005

8.95e-002 | Athens, TX (903) 677-0700 . Beeville, TX (361) 354-5200 . Midland, TX (432) 704-5351 # LIQUID EXTENDED ANALYSIS REPORT LABORATORY REPORT NUMBER 190107-1020-12-010719-02 #### PHYSICAL CONSTANTS PER GPA 2145-09 & TP-17 (1998) | CUSTOMER: | IACX | DATE SAMPLED: | 12/27/2018 | |-----------|--------------|-----------------|------------| | STATION: | 20126 | DATE ANALYZED: | 01/07/2019 | | PRODUCER: | IACX | EFFECTIVE DATE: | 12/01/2018 | | LEASE: | BITTER LAKES | | | | COMPONENT | MOLE % | LIQUID VOL % | <u>WT. %</u> | |----------------|---------------|---------------|---------------| | H2S | 0.000 | 0.000 | 0.000 | | OXYGEN | 0.000 | 0.000 | 0.000 | | NITROGEN | 0.031 | 0.009 | 0.011 | | CARBON DIOXIDE | 0.000 | 0.000 | 0.000 | | METHANE | 0.056 | 0.024 | 0.011 | | ETHANE | 2.243 | 1.536 | 0.817 | | PROPANE | 2.873 | 2.028 | 1.530 | | I-BUTANE | 1.862 | 1.560 | 1.310 | | N-BUTANE | 7.966 | 6.430 | 5.606 | | I-PENTANE | 10.254 | 9.602 | 8.958 | | N-PENTANE | 13.205 | 12.256 | 11.536 | | HEXANE PLUS | <u>61.510</u> | <u>66.555</u> | <u>70.221</u> | | TOTAL | 100.000 | 100.000 | 100.000 | | IDEAL SP. GRAVITY | 0.6703 | BTU / GAL | 116007.20 | |-------------------|--------|------------------|-----------| | MOL. WT. | 82.588 | VAPOR PRESS. | 39.30 | | CUBIC FT / GAL | 25.678 | LBS / GAL | 5.59 | | C1/C2 LV % RATIO | 1.563 | API GRAVITY | 79.60 | | CO2/C2 LV % RATIO | 0.000 | SP GRAV AS VAPOR | 2.85 | SAMPLED BY DT SAMPLE PRESS: SAMPLE TYPE: SPOT SAMPLE TEMP: CYLINDER NO.: 5152 COUNTY / STATE: COMMENT: SPOT ANALYST MIKE HOBGOOD 05-27-2016 PAGE 1 OF 3 ^{*} SEE NEXT PAGE FOR C6+ COMPOSITIONAL BREAKDOWN Athens, TX (903) 677-0700 . Beeville, TX (361) 354-5200 . Edmond, OK (405) 525-0579 STATION: 20126 LEASE: BITTER LAKES ## **C6+ FRACTION COMPOSITION** | HEXANE ISOMERS (C6'S) | | MOLE % | | | |-----------------------------------|----|--------|-----------|--------| | 2.2 Dimathulhutana | Р | | LIQ VOL % | WT. % | | 2,2-Dimethylbutane | | 0.963 | 1.029 | 1.005 | | 2,3-Dimethylbutane | PN | 0.000 | 0.000 | 0.000 | | 2-Methylpentane | P | 7.511 | 7.975 | 7.837 | | 3-Methylpentane | Р | 4.516 | 4.716 | 4.712 | | Methylcyclopentane | N | 0.000 | 0.000 | 0.000 | | Benzene | Α | 1.287 | 0.922 | 1.218 | | Cyclohexane | N | 5.380 | 4.686 | 5.483 | | n-Hexane | Р | 12.773 | 13.448 | 13.328 | | C6 TOTALS | | 32.430 | | | | HEPTANE ISOMERS (C7'S) | | | | | | 3,3-Dimethylpentane | Р | 0.170 | 0.198 | 0.206 | | 2,3-Dimethylpentane | Р | 0.000 | 0.000 | 0.000 | | 2,2-Dimethylpentane | Р | 0.422 | 0.506 | 0.513 | | 2,4-Dimethylpentane | Р | 1.224 | 1.468 | 1.485 | | 2 & 3-Methylhexane | Р | 0.429 | 0.504 | 0.521 | | 1,t-3-Dimethylcyclopentane | N | 0.000 | 0.000 | 0.000 | | 1,c-3-Dimethylcyclopentane | N | 0.000 | 0.000 | 0.000 | | 1,t-2-Dimethylcyclopentane | N | 0.000 | 0.000 | 0.000 | | 3-Ethylpentane | N | 0.000 | 0.000 | 0.000 | | Toluene | Α | 1.026 | 0.879 | 1.145 | | Methylcyclohexane | N | 7.920 | 8.147 | 9.416 | | Ethylcyclopentane | N | 0.000 | 0.000 | 0.000 | | n-Heptane | Р | 8.547 | 10.097 | 10.370 | | C7 TOTALS | | 19.738 | | | | OCTANE ISOMERS (C8'S) | | | | | | 2,4 & 2,5-Dimethylhexane | Р | 0.627 | 0.833 | 0.868 | | 1,t-2,c-4-Trimethylcyclopentane | N | 0.000 | 0.000 | 0.000 | | 1,t-2,c-3-Trimethylcyclopentane | N | 0.000 | 0.000 | 0.000 | | 2-Methylheptane | Р | 2.470 | 3.258 | 3.416 | | 1,c-2,t-4-Trimethylcyclopentane | N | 0.000 | 0.000 | 0.000 | | 3-Methylheptane | Р | 0.763 | 0.995 | 1.055 | | 1,c-3-Dimethylcyclohexane | N | 0.088 | 0.103 | 0.119 | | 1,t-4-Dimethylcyclohexane | N | 0.000 | 0.000 | 0.000 | | methyl-ethylcyclopentanes | N | 0.000 | 0.000 | 0.000 | | 1,t-3 & 1,c-4 Dimethylcyclohexane | N | 0.400 | 0.461 | 0.543 | | 1,c-2-Dimethylcyclohexane | N | 0.243 | 0.276 | 0.330 | | Ethylcyclohexane | N | 0.787 | 0.904 | 1.070 | | Ethylbenzene | А | 0.025 | 0.025 | 0.032 | | m & p-Xylene | А | 0.093 | 0.092 | 0.119 | | o-Xylene | А | 0.090 | 0.087 | 0.115 | | Cyclooctane | Ч | 0.029 | 0.031 | 0.039 | | n-Octane | Р | 3.257 | 4.272 | 4.505 | | C8 TOTALS | | 8.871 | 7.414 | 7.000 | Athens, TX (903) 677-0700 . Beeville, TX (361) 354-5200 . Edmond, OK (405) 525-0579 **STATION**: 20126 LEASE: BITTER LAKES #### **C6+ FRACTION COMPOSITION** | NONANE ISOMERS (C9'S) | | MOLE % | LIQ VOL % | WT. % | |---|--------|--------|-----------|-------| | Trimethylhexanes | Р | 0.000 | 0.000 | 0.000 | | Dimethylpentanes | Р | 0.000 | 0.000 | 0.000 | | Isopropylcyclopentane | N | 0.000 | 0.000 | 0.000 | | n-Propylcyclopentane | N | 0.000 | 0.000 | 0.000 | | 3-Methyloctane | Р | 0.000 | 0.000 | 0.000 | | Trimethylcyclohexanes | Ν | 0.000 | 0.000 | 0.000 | | Isopropylbenzene | Α | 0.029 | 0.032 | 0.042 | | Isopropylcyclohexane | Ν | 0.000 | 0.000 | 0.000 | | n-Propylcyclohexane | Ν | 0.022 | 0.028 | 0.033 | | n-Propyllbenzene | Α | 0.033 | 0.037 | 0.048 | | m-Ethyltoluene | Α | 0.000 | 0.000 | 0.000 | | p-Ethyltoluene | Α | 0.000 | 0.000 | 0.000 | | 1,3,5-Trimethylbenzene | Α | 0.004 | 0.004 | 0.006 | | 4 & 5-Methylnonane | Р | 0.000 | 0.000 | 0.000 | | o-Ethyltoluene & 3-Methylnonane | AP | 0.000 | 0.000 | 0.000 | | 1,2,3-Trimethylbenzene | Α | 0.000 | 0.000 | 0.000 | | n-Nonane | Р | 0.024 | 0.034 | 0.037 | | C9 TOTALS | | 0.111 | | | | DECANE ISOMERS (C10'S) | | | | | | 2-Methylnonane | Р | 0.000 | 0.000 | 0.000 | | tert-Butylbenzene | Α | 0.013 | 0.016 | 0.020 | | 1,2,4-Trimethylbenzene | Α | 0.029 | 0.032 | 0.042 | | Isobutylcyclohexane & tert-Butylcyclohexane | | 0.192 | 0.267 | 0.326 | | Isobutylbenzene | Α | 0.000 | 0.000 | 0.000 | | sec-Butylbenzene | Α | 0.005 | 0.007 | 0.009 | | n-Butylcyclohexane | N | 0.015 | 0.022 | 0.026 | | 1,3-Diethylbenzene | Α | 0.000 | 0.000 | 0.000 | | 1,2-Diethylbenzene & n-Butylbenzene | Α | 0.010 | 0.013 | 0.016 | | 1,4-Diethylbenzene | Α | 0.000 | 0.000 | 0.000 | | n-Decane | Р | 0.096 | 0.151 | 0.166 | | C10 TOTALS | | 0.359 | | | | UNDECANE ISOMERS (C11'S) | K. 170 | | | | | n-Undecane | Р | 0.000 | 0.000 | 0.000 | | DODECANE ISOMERS (C12'S) | | | | | | n-Dodecane + | Р | 0.000 | 0.000 | 0.000 | "Condensate Tank Flash" C3+ Mass Flow =1.399 ton/yr #### 13.2.2 Unpaved Roads #### 13.2.2.1 General When a vehicle travels an unpaved road, the force of the wheels on the road surface causes pulverization of surface material. Particles are lifted and dropped from the rolling wheels, and the road surface is exposed to strong air currents in turbulent shear with the surface. The turbulent wake behind the vehicle continues to act on the road surface after the vehicle has passed. The particulate emission factors presented in the previous draft version of this section of AP-42, dated October 2001, implicitly included the emissions from vehicles in the form of exhaust, brake wear, and tire wear as well as resuspended road surface material²⁵. EPA included these sources in the emission factor equation for unpaved public roads (equation 1b in this section) since the field testing data used to develop the equation included both the direct emissions from vehicles and emissions from resuspension of road dust. This version of the unpaved public road emission factor equation only estimates particulate emissions from resuspended road surface material ^{23, 26}. The particulate emissions from vehicle exhaust, brake wear, and tire wear are now estimated separately using EPA's MOBILE6.2 ²⁴. This approach eliminates the possibility of double counting emissions. Double counting results when employing the previous version of the emission factor equation in this section and MOBILE6.2 to estimate particulate emissions from vehicle traffic on unpaved public roads. It also incorporates the decrease in exhaust emissions that has occurred since the unpaved public road emission factor equation was developed. The previous version of the unpaved public road emission factor equation includes estimates of emissions from exhaust, brake wear, and tire wear based on emission rates for vehicles in the
1980 calendar year fleet. The amount of PM released from vehicle exhaust has decreased since 1980 due to lower new vehicle emission standards and changes in fuel characteristics. #### 13.2.2.2 Emissions Calculation And Correction Parameters¹⁻⁶ The quantity of dust emissions from a given segment of unpaved road varies linearly with the volume of traffic. Field investigations also have shown that emissions depend on source parameters that characterize the condition of a particular road and the associated vehicle traffic. Characterization of these source parameters allow for "correction" of emission estimates to specific road and traffic conditions present on public and industrial roadways. Dust emissions from unpaved roads have been found to vary directly with the fraction of silt (particles smaller than 75 micrometers [µm] in diameter) in the road surface materials. The silt fraction is determined by measuring the proportion of loose dry surface dust that passes a 200-mesh screen, using the ASTM-C-136 method. A summary of this method is contained in Appendix C of AP-42. Table 13.2.2-1 summarizes measured silt values for industrial unpaved roads. Table 13.2.2-2 summarizes measured silt values for public unpaved roads. It should be noted that the ranges of silt content vary over two orders of magnitude. Therefore, the use of data from this table can potentially introduce considerable error. Use of this data is strongly discouraged when it is feasible to obtain locally gathered data. Since the silt content of a rural dirt road will vary with geographic location, it should be measured for use in projecting emissions. As a conservative approximation, the silt content of the parent soil in the area can be used. Tests, however, show that road silt content is normally lower than in the surrounding parent soil, because the fines are continually removed by the vehicle traffic, leaving a higher percentage of coarse particles. Other variables are important in addition to the silt content of the road surface material. For example, at industrial sites, where haul trucks and other heavy equipment are common, emissions are highly correlated with vehicle weight. On the other hand, there is far less variability in the weights of cars and pickup trucks that commonly travel publicly accessible unpaved roads throughout the United States. For those roads, the moisture content of the road surface material may be more dominant in determining differences in emission levels between, for example a hot, desert environment and a cool, moist location. The PM-10 and TSP emission factors presented below are the outcomes from stepwise linear regressions of field emission test results of vehicles traveling over unpaved surfaces. Due to a limited amount of information available for PM-2.5, the expression for that particle size range has been scaled against the result for PM-10. Consequently, the quality rating for the PM-2.5 factor is lower than that for the PM-10 expression. Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS $^{\rm a}$ | | Road Use Or | Plant | No. Of | Silt Content (%) | | | |---------------------------------|-------------------------------|-------|---------|------------------|------|--| | Industry | Surface Material | Sites | Samples | Range | Mean | | | Copper smelting | Plant road | 1 | 3 | 16 - 19 | 17 | | | Iron and steel production | Plant road | 19 | 135 | 0.2 - 19 | 6.0 | | | Sand and gravel processing | Plant road | 1 | 3 | 4.1 - 6.0 | 4.8 | | | | Material storage area | 1 | 1 | - | 7.1 | | | Stone quarrying and processing | Plant road | 2 | 10 | 2.4 - 16 | 10 | | | | Haul road to/from pit | 4 | 20 | 5.0-15 | 8.3 | | | Taconite mining and processing | Service road | 1 | 8 | 2.4 - 7.1 | 4.3 | | | | Haul road to/from pit | 1 | 12 | 3.9 - 9.7 | 5.8 | | | Western surface coal mining | Haul road to/from pit | 3 | 21 | 2.8 - 18 | 8.4 | | | | Plant road | 2 | 2 | 4.9 - 5.3 | 5.1 | | | | Scraper route | 3 | 10 | 7.2 - 25 | 17 | | | | Haul road
(freshly graded) | 2 | 5 | 18 - 29 | 24 | | | Construction sites | Scraper routes | 7 | 20 | 0.56-23 | 8.5 | | | Lumber sawmills | Log yards | 2 | 2 | 4.8-12 | 8.4 | | | Municipal solid waste landfills | Disposal routes | 4 | 20 | 2.2 - 21 | 6.4 | | ^aReferences 1,5-15. The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT): For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation: $$E = k (s/12)^a (W/3)^b$$ (1a) and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following: $$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$ (1b) where k, a, b, c and d are empirical constants (Reference 6) given below and E = size-specific emission factor (lb/VMT) s = surface material silt content (%) W = mean vehicle weight (tons) M = surface material moisture content (%) S = mean vehicle speed (mph) C =emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear. The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows: $$1 \text{ lb/VMT} = 281.9 \text{ g/VKT}$$ The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27. Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b | | Industria | al Roads (Equa | ation 1a) | Public Roads (Equation 1b) | | | |----------------|-----------|---------------------|-----------|----------------------------|-------|--------| | Constant | PM-2.5 | PM-2.5 PM-10 PM-30* | | PM-2.5 | PM-10 | PM-30* | | k (lb/VMT) | 0.15 | 1.5 | 4.9 | 0.18 | 1.8 | 6.0 | | a | 0.9 | 0.9 | 0.7 | 1 | 1 | 1 | | b | 0.45 | 0.45 | 0.45 | - | - | - | | С | ı | 1 | - | 0.2 | 0.2 | 0.3 | | d | | - | - | 0.5 | 0.5 | 0.3 | | Quality Rating | В | В | В | В | В | В | ^{*}Assumed equivalent to total suspended particulate matter (TSP) Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation: Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b | | | Mean Vehicle
Weight | | Mean Vehicle
Speed | | Mean | Surface
Moisture | |-----------------------------------|----------------------------|------------------------|-------|-----------------------|-------|------------------|---------------------| | Emission Factor | Surface Silt
Content, % | Mg | ton | km/hr | mph | No. of
Wheels | Content,
% | | Industrial Roads
(Equation 1a) | 1.8-25.2 | 1.8-260 | 2-290 | 8-69 | 5-43 | 4-17ª | 0.03-13 | | Public Roads
(Equation 1b) | 1.8-35 | 1.4-2.7 | 1.5-3 | 16-88 | 10-55 | 4-4.8 | 0.03-13 | ^a See discussion in text. As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads. The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model 23 . The emission factor also varies with aerodynamic size range [&]quot;-" = not used in the emission factor equation Table 13.2.2-4. EMISSION FACTOR FOR 1980'S VEHICLE FLEET EXHAUST, BRAKE WEAR AND TIRE WEAR | Particle Size Range ^a | C, Emission Factor for Exhaust, Brake Wear and Tire Wear ^b | |----------------------------------|---| | $PM_{2.5}$ | 0.00036 | | PM_{10} | 0.00047 | | PM_{30}^{c} | 0.00047 | - ^a Refers to airborne particulate matter (PM-x) with an aerodynamic diameter equal to or less than x micrometers. - b Units shown are pounds per vehicle mile traveled (lb/VMT). - ^c PM-30 is sometimes termed "suspendable particulate" (SP) and is often used as a surrogate for TSP. It is important to note that the vehicle-related source conditions refer to the average weight, speed, and number of wheels for all vehicles traveling the road. For example, if 98 percent of traffic on the road are 2-ton cars and trucks while the remaining 2 percent consists of 20-ton trucks, then the mean weight is 2.4 tons. More specifically, Equations 1a and 1b are *not* intended to be used to calculate a separate emission factor for each vehicle class within a mix of traffic on a given unpaved road. That is, in the example, one should *not* determine one factor for the 2-ton vehicles and a second factor for the 20-ton trucks. Instead, only one emission factor should be calculated that represents the "fleet" average of 2.4 tons for all vehicles traveling the road. Moreover, to retain the quality ratings when addressing a group of unpaved roads, it is necessary that reliable correction parameter values be determined for the road in question. The field and laboratory procedures for determining road surface silt and moisture contents are given in AP-42 Appendices C.1 and C.2. Vehicle-related parameters should be developed by recording visual observations of traffic. In some cases, vehicle parameters for
industrial unpaved roads can be determined by reviewing maintenance records or other information sources at the facility. In the event that site-specific values for correction parameters cannot be obtained, then default values may be used. In the absence of site-specific silt content information, an appropriate mean value from Table 13.2.2-1 may be used as a default value, but the quality rating of the equation is reduced by two letters. Because of significant differences found between different types of road surfaces and between different areas of the country, use of the default moisture content value of 0.5 percent in Equation 1b is discouraged. The quality rating should be downgraded two letters when the default moisture content value is used. (It is assumed that readers addressing industrial roads have access to the information needed to develop average vehicle information in Equation 1a for their facility.) The effect of routine watering to control emissions from unpaved roads is discussed below in Section 13.2.2.3, "Controls". However, all roads are subject to some natural mitigation because of rainfall and other precipitation. The Equation 1a and 1b emission factors can be extrapolated to annual average uncontrolled conditions (but including natural mitigation) under the simplifying assumption that annual average emissions are inversely proportional to the number of days with measurable (more than 0.254 mm [0.01 inch]) precipitation: $$E_{\text{ext}} = E [(365 - P)/365]$$ (2) where: E_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT E = emission factor from Equation 1a or 1b P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation (see below) Figure 13.2.2-1 gives the geographical distribution for the mean annual number of "wet" days for the United States. Equation 2 provides an estimate that accounts for precipitation on an annual average basis for the purpose of inventorying emissions. It should be noted that Equation 2 does not account for differences in the temporal distributions of the rain events, the quantity of rain during any event, or the potential for the rain to evaporate from the road surface. In the event that a finer temporal and spatial resolution is desired for inventories of public unpaved roads, estimates can be based on a more complex set of assumptions. These assumptions include: - 1. The moisture content of the road surface material is increased in proportion to the quantity of water added; - 2. The moisture content of the road surface material is reduced in proportion to the Class A pan evaporation rate; - 3. The moisture content of the road surface material is reduced in proportion to the traffic volume; and - 4. The moisture content of the road surface material varies between the extremes observed in the area. The CHIEF Web site (http://www.epa.gov/ttn/chief/ap42/ch13/related/c13s02-2.html) has a file which contains a spreadsheet program for calculating emission factors which are temporally and spatially resolved. Information required for use of the spreadsheet program includes monthly Class A pan evaporation values, hourly meteorological data for precipitation, humidity and snow cover, vehicle traffic information, and road surface material information. It is emphasized that the simple assumption underlying Equation 2 and the more complex set of assumptions underlying the use of the procedure which produces a finer temporal and spatial resolution have not been verified in any rigorous manner. For this reason, the quality ratings for either approach should be downgraded one letter from the rating that would be applied to Equation 1. #### 13.2.2.3 Controls¹⁸⁻²² A wide variety of options exist to control emissions from unpaved roads. Options fall into the following three groupings: 1. Vehicle restrictions that limit the speed, weight or number of vehicles on the road; - 2. <u>Surface improvement</u>, by measures such as (a) paving or (b) adding gravel or slag to a dirt road; and - 3. <u>Surface treatment</u>, such as watering or treatment with chemical dust suppressants. Available control options span broad ranges in terms of cost, efficiency, and applicability. For example, traffic controls provide moderate emission reductions (often at little cost) but are difficult to enforce. Although paving is highly effective, its high initial cost is often prohibitive. Furthermore, paving is not feasible for industrial roads subject to very heavy vehicles and/or spillage of material in transport. Watering and chemical suppressants, on the other hand, are potentially applicable to most industrial roads at moderate to low costs. However, these require frequent reapplication to maintain an acceptable level of control. Chemical suppressants are generally more cost-effective than water but not in cases of temporary roads (which are common at mines, landfills, and construction sites). In summary, then, one needs to consider not only the type and volume of traffic on the road but also how long the road will be in service when developing control plans. <u>Vehicle restrictions</u>. These measures seek to limit the amount and type of traffic present on the road or to lower the mean vehicle speed. For example, many industrial plants have restricted employees from driving on plant property and have instead instituted bussing programs. This eliminates emissions due to employees traveling to/from their worksites. Although the heavier average vehicle weight of the busses increases the base emission factor, the decrease in vehicle-miles-traveled results in a lower overall emission rate. United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park NC 27711 EPA-453/R-95-017 November 1995 Air # **Emission Estimates**Protocol for Equipment Leak TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source) | Equipment Type | Service ^a | Emission Factor
(kg/hr/source) ^b | |---------------------|--|--| | Valves | Gas
Heavy Oil
Light Oil
Water/Oil | 4.5E-03
8.4E-06
2.5E-03
9.8E-05 | | Pump seals | Gas
Heavy Oil
Light Oil
Water/Oil | 2.4E-03
NA
1.3E-02
2.4E-05 | | Others ^C | Gas
Heavy Oil
Light Oil
Water/Oil | 8.8E-03
3.2E-05
7.5E-03
1.4E-02 | | Connectors | Gas
Heavy Oil
Light Oil
Water/Oil | 2.0E-04
7.5E-06
2.1E-04
1.1E-04 | | Flanges | Gas
Heavy Oil
Light Oil
Water/Oil | 3.9E-04
3.9E-07
1.1E-04
2.9E-06 | | Open-ended lines | Gas
Heavy Oil
Light Oil
Water/Oil | 2.0E-03
1.4E-04
1.4E-03
2.5E-04 | ^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible. bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor. CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves. # **Product Specification** # Model C65 - Capstone MicroTurbine™ # Summary This Product Specification describes the Capstone Model C65 MicroTurbine power generating system (hereafter referred to by Capstone as a MicroTurbine). The MicroTurbine provides on-site electrical power for primary or standby applications, and for peak shaving, base loading, and/or capacity additions. MicroTurbine(s) may generate power in parallel with an electrical utility (Grid Connect mode), or isolated from the utility (Stand Alone mode). The system consists of a turbine engine, solid-state power electronics, a fuel system, and an indoor/outdoor-rated NEMA 3R enclosure. Major turbine engine components include a compressor, a recuperator (exhaust gas heat exchanger), a combustor, a turbine, and a generator. The turbine engine is air-cooled and supported on air-lubricated compliant foil bearings. The compressor impeller, turbine rotor, and generator rotor are mounted on a single shaft, which comprises the only moving part in the engine. Power electronics are solid-state, double conversion type, producing three-phase alternating current output power from the high-frequency alternating current engine output. # Available Model Types Model C65 MicroTurbine systems are available in several versions, depending on fuel type, ICHP integrated heat recovery, certifications, and other characteristics. Table 1 below summarizes the available construction types covered by this Product Specification. | C65 Model | ICHP Core
Material | | Certifications (1) | | Dual
Mode | Fuel Capability | | | | |--------------|-----------------------|--------|--------------------|----------|--------------|-----------------|------------------|------------------|-------------------| | Designations | Copper | SS | CE | CARB (2) | Capable | Natural
Gas | Landfill
Gas | Digester
Gas | Propane
(HD-5) | | Standard | Option | Option | Option | | Option | Х | | | X ⁽⁴⁾ | | CARB | Х | | | Х | Option | Х | | | | | Low NOx | Option | | | | Option | Х | | | | | NYC (3) | Option | | | | Option | Х | | | X ⁽⁴⁾ | | Landfill | | | Option | Option | | | X ⁽⁴⁾ | | | | Digester | | Option | Option | Option | | | | X ⁽⁴⁾ | | Table 1. C65 Model Designations #### Notes: - (1) All versions are UL Listed except the CE Certified models - (2) Systems are in process of being
certified by the California Air Resources Board for exhaust emissions - (3) The New York City versions include a fuel regulator inside the MicroTurbine enclosure - (4) Operation on these fuels may be limited see sections below # Capstone Turbine Corporation • 21211 Nordhoff Street • Chatsworth • CA 91311 • USA Product Specification: Model C65 - Capstone MicroTurbine The tables and figures in the sections below may group the performance of these different construction types. Unless otherwise specified, the designation "C65" will cover all these construction types, and "All Other C65" will define all other constructions except any designations that are specifically called out in a given section. ## **Definitions** - ISO conditions are defined as: 15 °C (59 °F), 60% relative humidity, and sea level pressure of 101.3 kPa (14.696 psia). - HHV: Higher Heating Value - LHV: Lower Heating Value - HPNG: High Pressure Natural Gas - LPNG: Low Pressure Natural Gas - L/DG: Landfill/Digester Gas - SG: Sour Gas - kW_{th} Kilowatt (thermal) - kW_e Kilowatt (electric) - Scf: Standard cubic feet (standard references ISO temperature and pressure) - SCFM: Standard Cubic Feet per Minute (standard references ISO temperature and pressure) - SLPM: Standard Liters per Minute (standard references ISO temperature and pressure). - THD: Total Harmonic Distortion # **Table of Contents** | Summary | 1 | |--|----| | Available Model Types | 1 | | Definitions | 2 | | Performance Specification | 5 | | Performance Ratings at Full Load Power | 5 | | Electrical Performance Ratings at Full Load Power | 5 | | Performance Derating | 6 | | Fuel Input Requirements at Full Load Power | 11 | | Exhaust Output Ratings at Full Load Power | 11 | | Air Flow Requirements at Full Load Power | 12 | | Acoustic Emissions Ratings at Full Load Power | 13 | | MicroTurbine Dimensions and Weights | 13 | | MicroTurbine Temperature Ratings | 13 | | Engine Cycling Life | 14 | | ICHP Version Heat Recovery | 14 | | Certification Information | 15 | | Disclaimer Statement | 15 | | Capstone Contact Information | 16 | | Capstone Applications | 16 | | Capstone Service | 16 | | List of Tables | | | Table 1. C65 Model Designations | 1 | | Table 2. Performance Ratings | 5 | | Table 3. Electrical Performance Ratings in Grid Connect Mode | 5 | | Table 4. Electrical Performance Ratings in Stand Alone Mode | 6 | | Table 5. Fuel Input Requirements | 11 | | Table 6. Exhaust Output Ratings | 11 | | Table 7. Air Flow Requirements at ISO Conditions with Zero Back Pressure | 12 | | Table 8. Acoustic Emissions Ratings | 13 | | Table 9. MicroTurbine Dimensions and Weights | 13 | | Table 10. MicroTurbine Temperature Ratings | | | Table 11. C65 CARB ICHP with Copper Heat Recovery Module | 14 | | Table 12. All Other C65 ICHP with Copper Core Heat Recovery Module | | | Table 13. All Other C65 ICHP with Stainless Steel Heat Recovery Module | 14 | # Capstone Turbine Corporation • 21211 Nordhoff Street • Chatsworth • CA 91311 • USA Product Specification: Model C65 - Capstone MicroTurbine # List of Figures | Figure 1. | C65 Net Power Output vs. Ambient Temperature | . 7 | |-----------|---|-----| | Figure 2. | C65 Net Efficiency vs. Ambient Temperature | . 8 | | Figure 3. | C65 CARB & Low NOx Net Power vs. Ambient Temperature | . 9 | | Figure 4. | C65 CARB & Low NOx Net Efficiency vs. Ambient Temperature | 10 | # Performance Specification # Performance Ratings at Full Load Power Table 2 summarizes performance ratings at full load power and ISO conditions, without fuel gas compression or other external parasitic loads. **Table 2. Performance Ratings** | Parameter | C65 CARB & Low NOx | All Other C65 | |--|-------------------------------------|-------------------------------------| | Net Power Output | 65 (+0/-3) kW net | 65 (+0/-2) kW net | | Net Efficiency (LHV) | 28 (± 2)% | 29 (± 2)% | | Nominal Net Heat Rate (LHV) | 12,900 kJ /kWh
(12,200 Btu /kWh) | 12,400 kJ /kWh
(11,800 Btu /kWh) | | Nominal Generator Heat Rate (LHV) | 12,100 kJ /kWh
(11,400 Btu /kWh) | 11,600 kJ /kWh
(11,000 Btu /kWh) | | Nominal Steady State
Fuel Flow (HHV)
Notes (1) and (2) | 919,000 kJ/hr
(871,000 Btu/hr) | 888,000 kJ/hr
(842,000 BTU/hr) | #### Notes: - (1) The ratio of Higher Heating Value (HHV) to Lower Heating Value (LHV) is assumed to be 1.1. - (2) Onload fuel flows can be up to two times higher than the steady state values. # Electrical Performance Ratings at Full Load Power Table 3 presents the electrical performance ratings for Model C65 MicroTurbines operating in the Grid Connect mode at ISO conditions with zero back pressure, and without fuel gas compression or other external parasitic loads. Table 3. Electrical Performance Ratings in Grid Connect Mode | Parameter | C65 CARB & Low NOx | All Other C65 | |------------------------------------|------------------------------|------------------------------| | Net Power Output | 65 (+0/-3) kW | 65 (+0/-2) kW | | Max Apparent Power Output (1) | 65 kVA at 480 VAC | 65 kVA at 480 VAC | | Nominal Voltage
Operating Range | | | | Nominal Frequency Operating Range | 50/60 Hz | 50/60 Hz | | Output
Voltage Connection (2) | 3-phase, 3 or 4 wire wye | 3-phase, 3 or 4 wire wye | | Max Output
Current | 100 Amps RMS
steady state | 100 Amps RMS
steady state | | Current THD IEEE 519 compliant, 5% | | IEEE 519 compliant, 5% | #### Notes: - (1) The microturbine system operates at unity power factor in Grid Connect mode. - (2) The grid must be neutral grounded. Table 4 presents the electrical performance ratings for C65 MicroTurbines operating in the Stand Alone mode at ISO conditions, without fuel gas compression or other external parasitic loads. Table 4. Electrical Performance Ratings in Stand Alone Mode | Parameter | C65 CARB & Low NOx | All Other C65 Types | |---------------------------------|------------------------------|------------------------------| | Net Power Output | 65 (+0/-3) kW | 65 (+0/-2) kW | | Max Apparent Power Output (1) | 83 kVA at 480 VAC | 83 kVA at 480 VAC | | Nominal Voltage Operating Range | 400 to 480 VAC | 400 to 480 VAC | | Frequency Operating Range | 10 to 60 Hz | 10 to 60 Hz | | Output Voltage Connection (2) | 3-phase, 4 wire wye | 3-phase, 4 wire wye | | Max Output Current (3) | 127 Amps RMS
steady state | 127 Amps RMS
steady state | | Voltage THD | IEEE 519 Compliant, 5% | IEEE 519 Compliant, 5% | #### Notes: - (1) System power factor is limited by maximum current in Stand Alone mode - (2) Neutral must be solidly grounded - (3) Values assume linear load ## Performance Derating Performance is affected by ambient temperature and elevation. The performance ratings listed above are at full load power at ISO conditions. Performance derating occurs at ambient temperatures and elevations above ISO conditions and is also affected by air inlet pressure, back pressure, and system parasitic loads (e.g. fuel gas compressor, battery charging). Typical derating curves for power output and efficiency based on ambient temperature are shown in the curves on the following pages. These curves assume no parasitic losses and zero inlet and exhaust back pressure. Figure 1 presents the nominal rating and minimum/maximum net power output versus ambient temperature (at sea level) for the standard C65 MicroTurbine, without fuel gas compression. For C65 ICHP versions, this plot assumes the heat recovery module is in full bypass mode. #### Net Power vs. Ambient Temperature at Sea Level Figure 1. C65 Net Power Output vs. Ambient Temperature #### Notes: - (1) Nominal Rating and Min/Max Net Power vs. Ambient Temperature at Sea Level with Zero Back Pressure for the Standard C65 MicroTurbine (without Gas Compression). - (2) All other C65 versions behave according to Figure 1, except the CARB and Low NOx versions. Figure 2 presents the nominal rating and minimum/maximum net efficiency versus ambient temperature (at sea level) for the standard C65 MicroTurbine, without gas compression. For C65 ICHP versions, this plot assumes the heat recovery module is in full bypass mode. #### 35 30 25 Net Efficiency [%] 20 **Standard C65** 15 10 Nominal Minimum Maximum 5 0 0 30 40 60 70 80 90 130 10 20 100 110 120 #### Net Efficiency vs. Ambient Temperature at Sea Level Figure 2. C65 Net Efficiency vs. Ambient Temperature Ambient Temperature [°F] #### Notes: - (1) Nominal Rating and Min/Max Net Efficiency vs. Ambient Temperature at Sea Level with Zero Back Pressure for the Standard C65 MicroTurbine (without Gas Compression). - (2) All other C65 versions behave according to Figure 2, except the CARB and Low NOx versions. Figure 3 presents the nominal rating and minimum/maximum net power output versus ambient temperature (at sea level) for the C65 CARB & Low NOx versions, including the ICHP module in full heat recovery mode but without fuel gas compression. #### Net Power vs. Ambient Temperature at Sea Level 70 60 50 Net Power [kW] 30 **C65 CARB ICHP** Nominal 20 Minimum - Maximum 10 70 0 10 20 30 40 50 60 80 90 100 110 120 130 Ambient Temperature [°F] #### Figure 3. C65 CARB & Low NOx Net Power vs. Ambient Temperature #### Note: (1) Nominal Rating and Min/Max Net Power vs. Ambient Temperature at Sea Level with Zero Back Pressure for the C65 CARB and Low NOx versions (without Gas Compression). Figure 4 presents the nominal rating and minimum/maximum net efficiency versus ambient temperature (at sea level) for the C65 CARB and Low NOx versions, including the ICHP module in full heat recovery mode but without fuel gas compression. #### 35 30 25 Net Efficiency [%] **C65 CARB ICHP** 15 Nominal 10 Minimum - Maximum 5 0 10 20 30 40 50 60 70 80 90 100 110 120 130 Ambient Temperature [°F] #### Net Efficiency vs. Ambient Temperature at Sea Level Figure 4. C65 CARB & Low NOx Net
Efficiency vs. Ambient Temperature Note: (1) Nominal Rating and Min/Max Net Efficiency vs. Ambient Temperature at Sea Level with Zero Back Pressure for the C65 CARB and Low NOx versions (without Gas Compression). # Fuel Input Requirements at Full Load Power Table 5 presents fuel input requirements at full load power and ISO conditions. **Table 5. Fuel Input Requirements** | C65 Version | Fuel Type | Fuel Heat Content Range (HHV) | | |-------------|---------------------|-----------------------------------|--| | Standard | | | | | CARB | Notived Coo | $30,700 - 47,500 \text{ kJ/m}^3$ | | | Low NOx | Natural Gas | (825 to 1,275 Btu/scf) | | | NYC | | | | | Standard | Dronono (LID 5) (1) | 91,300 - 95,000 kJ/m ³ | | | NYC | Propane (HD-5) (1) | (2,450 to 2,550 Btu/scf) | | | Landfill | Landfill Gas (2) | 13,000 - 22,300 kJ/m ³ | | | Landilli | Landilli Gas V | (350 to 600 Btu/scf) | | | Digester | Digester Gas (2) | 20,500 - 32,600 kJ/m ³ | | | | | (550 to 875 Btu/scf) | | #### Notes: - (1) Propane (HD-5) will limit the ambient temperatures, elevation, and minimum power conditions where the microturbine systems can operate. Full operation is possible above 65°F and below 4,000 ft elevation; however, the fuel must always remain in the gaseous state. Contact Capstone for specific application guidance. - (2) Minimum power output is 35kW for these fuels. Additional fuel gas conditioning will be required. Consult Capstone for specific application guidance. # Exhaust Output Ratings at Full Load Power Table 6 presents nominal exhaust output ratings at full load power and ISO conditions, using natural gas. **Table 6. Exhaust Output Ratings** | Parameter | C65 CARB & Low NOx | All Other C65 | |----------------------------------|-----------------------------------|-----------------------------------| | Nominal Exhaust Gas Temp (1) | 311 °C (592 °F) | 309 °C (588 °F) | | Nominal Total Exhaust Energy (1) | 623,000 kJ/hr
(591,000 Btu/hr) | 591,000 kJ/hr
(561,000 Btu/hr) | | NOx Emissions ⁽²⁾ | <4 ppm V
@ 15% O₂ | <9 ppm V
@ 15% O_2 | | Exhaust Mass Flow | 0.51 kg/s
(1.13 lbm/s) | 0.49 kg/s
(1.08 lbm/s) | #### Notes: - (1) These are the final exhaust temperature and exhaust energy if the ICHP versions' heat recovery module is bypassing exhaust heat. Temperature and exhaust energy will be lower while recovering heat. - (2) Emissions for standard natural gas at 1,000 BTU/scf HHV. # Air Flow Requirements at Full Load Power Table 7 summarizes the nominal air flow requirements of the C65 MicroTurbine systems. Table 7. Air Flow Requirements at ISO Conditions with Zero Back Pressure | Parameter | All C65 | |---|--------------------------------| | Engine Inlet Air Flow | 965 scfm
(27,300 slpm) | | Engine Inlet Air Temp (1) (2) | -20 to 50 °C
(-4 to 122 °F) | | Electronics Controller Inlet Air Flow (3) | 500 scfm
(14,200 slpm) | | Electronics Controller Inlet Air Temp (2) | -20 to 50 °C
(-4 to 122 °F) | | Battery and Battery Controller Inlet Air Flow (4) | 370 scfm
(10,500 slpm) | | Battery Inlet Air Temp | -20 to 50 °C
(-4 to 122 °F) | #### Notes: ⁽¹⁾ For C65 versions that include the ICHP integral heat recovery module, minimum operating ambient temperature may be higher, depending on heat recovery fluid characteristics. For water, minimum ambient temperature is 1.7 °C (35 °F). ⁽²⁾ The Electronics Controller inlet air temperature must be within 2 °C (3.6 °F) of the Engine inlet air temperature. ⁽³⁾ Values for the C65 Grid Connect versions are comprised of 250 scfm for the Load Control Module and 250 scfm for the Engine Control Module. ⁽⁴⁾ Values for the C65 Dual Mode versions are comprised of 250 scfm for the Battery Control Module and 120 scfm for the Battery, and are in addition to the Electronics Controller air flow for the grid connect version. # Acoustic Emissions Ratings at Full Load Power Table 8 presents nominal acoustic emissions ratings, captured at full rated output power at a distance of 10 meters (33 feet). Actual sound levels for a given installation depend on many site factors, so the numbers provided here should only be used as general guidance. **Table 8. Acoustic Emissions Ratings** | Parameter C65 ICHP Versions | | All Other C65 | | |-----------------------------|--------|---------------|--| | Acoustic Emissions (1) | 65 dBA | 70 dBA | | #### Note: (1) The optional acoustic inlet hood kit can reduce acoustic emissions at the front of the microturbine by up to 5 dBA. # MicroTurbine Dimensions and Weights Table 9 summarizes approximate dimensions and weights of the C65 MicroTurbine systems. Table 9. MicroTurbine Dimensions and Weights | Parameter | C65 CARB ICHP | All Other C65 ICHP | All Other C65 | |--|---------------------|--------------------------------------|------------------------------------| | Height (1) | 2,620 mm | 2,390 mm | 2110 mm | | | (103 inches) | (94 inches) | (83 inches) | | Width | 762 mm | 762 mm | 762 mm | | | (30 inches) | (30 inches) | (30 inches) | | Depth (2) | 2,200 mm | 2,200 mm | 1956 mm | | | (87 inches) | (87 inches) | (77 inches) | | 1090 kg (2,400 lb)
(Grid Connect)
Weight | | 1000 kg (2,200 lb)
(Grid Connect) | 758 kg (1671 lb)
(Grid Connect) | | | 1,450 kg (3,200 lb) | 1,364 kg (3,000 lb) | 1121 kg (2471 lb) | | | (Dual Mode) | (Dual Mode) | (Dual Mode) | #### Notes: - (1) Height dimensions are to the roof line. Exhaust outlet extends at least 7 inches above the roof line. - (2) Depth includes 10 inch extension for the heat recovery module rain hood on ICHP versions. # MicroTurbine Temperature Ratings Table 10 summarizes the temperature ratings of MicroTurbine systems. The C65 and C65 ICHP systems must be stored dry. C65 ICHP system minimum operating temperature depends on heat recovery fluid characteristics. Table 10. MicroTurbine Temperature Ratings | Parameter | C65 | | |-----------------------|------------------------------|--| | Operating Temperature | -20 to 50 °C (-4 to 122 °F) | | | Storage Temperature | -40 to 65 °C (-40 to 149 °F) | | # **Engine Cycling Life** Consult Capstone for specific guidance if application requires more than 10,000 onload operations from idle to full power, or repeated cycling of more than 50% of engine power range within five-minute intervals. # ICHP Version Heat Recovery The C65 ICHP versions, in heat recovery mode, recover the exhaust energy of the C65 MicroTurbine. Tables 11 through 13 show the ICHP system heat recovery in full heat recovery mode for water at various inlet water temperatures. The minimum heat recovery is 3 kW_{th} (10 MBtu/hr) in full bypass mode. Table 11. C65 CARB ICHP with Copper Heat Recovery Module | Water Temperature | | Heet Becovery | |-------------------|----------------|------------------------------------| | Inlet | Outlet | Heat Recovery | | 30 °C (85 °F) | 42 °C (108 °F) | 132 kW _{th} (450 MBtu/hr) | | 60 °C (140 °F) | 71 °C (160 °F) | 118 kW _{th} (400 MBtu/hr) | | 85 °C (185 °F) | 95 °C (203 °F) | 106 kW _{th} (360 MBtu/hr) | Table 12. All Other C65 ICHP with Copper Core Heat Recovery Module | Water Temperature | | Hoot Boogyany | |-------------------|----------------|------------------------------------| | Inlet | Outlet | Heat Recovery | | 30 °C (85 °F) | 41 °C (106 °F) | 126 kW _{th} (430 MBtu/hr) | | 60 °C (140 °F) | 70 °C (159 °F) | 112 kW _{th} (380 MBtu/hr) | | 85 °C (185 °F) | 94 °C (202 °F) | 100 kW _{th} (345 MBtu/hr) | Table 13. All Other C65 ICHP with Stainless Steel Heat Recovery Module | Water Temperature | | Heat Recovery | | |-------------------|----------------|-----------------------------------|--| | Inlet | Outlet | neat Necovery | | | 30 °C (85 °F) | 37 °C (98 °F) | 78 kW _{th} (265 MBtu/hr) | | | 60 °C (140 °F) | 67 °C (152 °F) | 70 kW _{th} (240 MBtu/hr) | | | 85 °C (185 °F) | 91 °C (196 °F) | 63 kW _{th} (215 MBtu/hr) | | #### Conditions for Tables 11-13: - ±10% performance range - 2.5 l/s (40 gal/min) water flow - Full power output @ 65 kW_e - ISO Conditions # Certification Information Please contact Capstone for the latest certification information. ## Disclaimer Statement All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in applications where malfunction may result in injury or death to persons. The information contained in this document does not affect or change Capstone's warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Capstone or third parties. All information contained in this document was obtained in specific environments and is presented as an illustration. The results obtained in other environments may vary. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Capstone be liable for damages arising directly or indirectly from any use of the information contained in this document. # Capstone Contact Information If questions arise regarding Model C65 Product Specification, please contact Capstone Turbine Corporation for assistance and information: # Capstone Applications Toll Free Telephone: (866) 4-CAPSTONE or (866) 422-7786 Fax: (818) 734-5385 E-mail: applications@capstoneturbine.com # Capstone Service Capstone Technical Support Toll Free Telephone: (877) 282-8966 Service Telephone: (818) 407-3600 • Fax: (818) 734-1080 E-mail: service@capstoneturbine.com Capstone Technical Support (Japan) Service Telephone: (818) 407-3700 • Fax: (818) 734-1080 E-mail: servicejapan@capstoneturbine.com # **Technical Reference** # Capstone MicroTurbine™ Systems Emissions # Summary Capstone MicroTurbine™ systems are inherently clean and can meet some of the strictest emissions standards in the world. This technical reference is to provide customers with information that may be requested by local air permitting organizations or to
compare air quality impacts of different technologies for a specific project. The preferred units of measure are "output based"; meaning that the quantity of a particular exhaust emission is reported relative to the useable output of the microturbine – typically in pounds per megawatt hour for electrical generating equipment. This technical reference also provides volumetric measurements in parts per million and milligrams per normal cubic meter. A conversion between several common units is also provided. ### Maximum Exhaust Emissions at ISO Conditions Table 1 below summarizes the exhaust emissions at full power and ISO conditions for different Capstone microturbine models. Note that the fuel can have a significant impact on certain emissions. For example landfill and digester gas can be made up of a wide variety of fuel elements and impurities, and typically contains some percentage of carbon dioxide (CO₂). This CO₂ dilutes the fuel, makes complete combustion more difficult, and results in higher carbon monoxide emissions (CO) than for pipeline-quality natural gas. Table 1. Emission for Different Capstone Microturbine Models in [lb/MWhe] | Model | Fuel | NOx | СО | VOC (5) | |-----------------|------------------|------|------|---------| | C30 NG | Natural Gas (1) | 0.64 | 1.8 | 0.23 | | CR30 MBTU | Landfill Gas (2) | 0.64 | 22.0 | 1.00 | | CR30 MBTU | Digester Gas (3) | 0.64 | 11.0 | 1.00 | | C30 Liquid | Diesel #2 (4) | 2.60 | 0.41 | 0.23 | | C65 NG Standard | Natural Gas (1) | 0.46 | 1.25 | 0.10 | | C65 NG Low NOx | Natural Gas (1) | 0.17 | 1.30 | 0.10 | | C65 NG CARB | Natural Gas (1) | 0.17 | 0.24 | 0.05 | | CR65 Landfill | Landfill Gas (2) | 0.46 | 4.0 | 0.10 | | CR65 Digester | Digester Gas (3) | 0.46 | 4.0 | 0.10 | | C200 NG | Natural Gas (1) | 0.40 | 1.10 | 0.10 | | C200 NG CARB | Natural Gas (1) | 0.14 | 0.20 | 0.04 | | CR200 Digester | Digester Gas (3) | 0.40 | 3.6 | 0.10 | #### Notes: - (1) Emissions for standard natural gas at 1,000 BTU/scf (HHV) or 39.4 MJ/m3 (HHV) - (2) Emissions for surrogate gas containing 42% natural gas, 39% CO2, and 19% Nitrogen - (3) Emissions for surrogate gas containing 63% natural gas and 37% CO2 - (4) Emissions for Diesel #2 according to ASTM D975-07b - (5) Expressed as Methane # Capstone Turbine Corporation • 21211 Nordhoff Street • Chatsworth • CA 91311 • USA Technical Reference: Microturbine System Emissions Table 2 provides the same output-based information shown in Table 1, but expressed in grams per horsepower hour (g/hp-hr). Table 2. Emission for Different Capstone Microturbine Models in [g/hp-hr] | Model | Fuel | NOx | СО | VOC (5) | |-----------------|------------------|------|------|---------| | C30 NG | Natural Gas (1) | 0.22 | 0.60 | 0.078 | | CR30 MBTU | Landfill Gas (2) | 0.22 | 7.4 | 0.340 | | CR30 MBTU | Digester Gas (3) | 0.22 | 3.7 | 0.340 | | C30 Liquid | Diesel #2 (4) | 0.90 | 0.14 | 0.078 | | C65 NG Standard | Natural Gas (1) | 0.16 | 0.42 | 0.034 | | C65 NG Low NOx | Natural Gas (1) | 0.06 | 0.44 | 0.034 | | C65 NG CARB | Natural Gas (1) | 0.06 | 0.08 | 0.017 | | CR65 Landfill | Landfill Gas (2) | 0.16 | 1.4 | 0.034 | | CR65 Digester | Digester Gas (3) | 0.16 | 1.4 | 0.034 | | C200 NG | Natural Gas (1) | 0.14 | 0.37 | 0.034 | | C200 NG CARB | Natural Gas (1) | 0.05 | 0.07 | 0.014 | | CR200 Digester | Digester Gas (3) | 0.14 | 1.3 | 0.034 | Notes: - same as for Table 1 Emissions may also be reported on a volumetric basis, with the most common unit of measurement being parts per million. This is typically a measurement that is corrected to specific oxygen content in the exhaust and without considering moisture content. The abbreviation for this unit of measurement is "ppmvd" (parts per million by volume, dry) and is corrected to 15% oxygen for electrical generating equipment such as microturbines. The relationship between an output based measurement like pounds per MWh and a volumetric measurement like ppmvd depends on the characteristics of the generating equipment and the molecular weight of the criteria pollutant being measured. Table 3 expresses the emissions in ppmvd at 15% oxygen for the Capstone microturbine models shown in Table 1. Note that raw measurements expressed in ppmv will typically be lower than the corrected values shown in Table 3 because the microturbine exhaust has greater than 15% oxygen. Another volumetric unit of measurement expresses the mass of a specific criteria pollutant per standard unit of volume. Table 4 expresses the emissions in milligrams per normal cubic meter at 15% oxygen. Normal conditions for this purpose are expresses as one atmosphere of pressure and zero degrees Celsius. Note that both the ppmvd and mg/m3 measurements are for specific oxygen content. A conversion can be made to adjust either unit of measurement to other reference oxygen contents, if required. Use the equation below to convert from one reference oxygen content to another: Emissions at New O₂ = $$\frac{(20.9 - \text{New O2 Percent})}{(20.9 - \text{Current O2 Percent})} \text{ X Emissions at Current O2}$$ For example, to express 9 ppmvd of NOx at 15% oxygen to ppmvd at 3% oxygen: Emissions at 3% O2 = $$\frac{(20.9 - 3.0)}{(20.9 - 15.0)} \text{ X 9 = 27 ppmvd}$$ Table 3. Emission for Different Capstone Microturbine Models in [ppmvd] at 15% O2 | Model | Fuel | NOx | СО | voc | |-----------------|------------------|-----|-----|-----| | C30 NG | Natural Gas (1) | 9 | 40 | 9 | | CR30 MBTU | Landfill Gas (2) | 9 | 500 | 40 | | CR30 MBTU | Digester Gas (3) | 9 | 250 | 40 | | C30 Liquid | Diesel #2 (4) | 35 | 9 | 9 | | C65 NG Standard | Natural Gas (1) | 9 | 40 | 7 | | C65 NG Low NOx | Natural Gas (1) | 4 | 40 | 7 | | C65 NG CARB | Natural Gas (1) | 4 | 8 | 3 | | CR65 Landfill | Landfill Gas (2) | 9 | 130 | 7 | | CR65 Digester | Digester Gas (3) | 9 | 130 | 7 | | C200 NG | Natural Gas (1) | 9 | 40 | 7 | | C200 NG CARB | Natural Gas (1) | 4 | 8 | 3 | | CR200 Digester | Digester Gas (3) | 9 | 130 | 7 | Notes: same as Table 1 Table 4. Emission for Different Capstone Microturbine Models in [mg/m3] at 15% O2 | Model | Fuel | NOx | СО | VOC (5) | |-----------------|------------------|-----|-----|---------| | C30 NG | Natural Gas (1) | 18 | 50 | 6 | | CR30 MBTU | Landfill Gas (2) | 18 | 620 | 30 | | CR30 MBTU | Digester Gas (3) | 18 | 310 | 30 | | C30 Liquid | Diesel #2 (4) | 72 | 11 | 6 | | C65 NG Standard | Natural Gas (1) | 19 | 50 | 5 | | C65 NG Low NOx | Natural Gas (1) | 8 | 50 | 5 | | C65 NG CARB | Natural Gas (1) | 8 | 9 | 2 | | CR65 Landfill | Landfill Gas (2) | 18 | 160 | 5 | | CR65 Digester | Digester Gas (3) | 18 | 160 | 5 | | C200 NG | Natural Gas (1) | 18 | 50 | 5 | | C200 NG CARB | Natural Gas (1) | 8 | 9 | 2 | | CR200 Digester | Digester Gas (3) | 18 | 160 | 5 | Notes: same as Table 1 The emissions stated in Tables 1, 2, 3 and 4 are guaranteed by Capstone for new microturbines during the standard warranty period. They are also the expected emissions for a properly maintained microturbine according to manufacturer's published maintenance schedule for the useful life of the equipment. #### Emissions at Full Power but Not at ISO Conditions The maximum emissions in Tables 1, 2, 3 and 4 are at full power under ISO conditions. These levels are also the expected values at full power operation over the published allowable ambient temperature and elevation ranges. #### **Emissions at Part Power** Capstone microturbines are designed to maintain combustion stability and low emissions over a wide operating range. Capstone microturbines utilize multiple fuel injectors, which are switched on or off depending on the power output of the turbine. All injectors are typically on when maximum power is demanded, regardless of the ambient temperature or elevation. As the load requirements of the microturbine are decreased, injectors will be switched off to maintain stability and low emissions. However, the emissions relative to the lower power output may increase. This effect differs for each microturbine model. # **Emissions Calculations for Permitting** Air Permitting agencies are normally concerned with the maximum amount of a given pollutant being emitted per unit of time (for example pounds per day of NOx). The simplest way to make this calculation is to use the maximum microturbine full electrical power output (expressed in MW) multiplied by the emissions rate in pounds per MWhe times the number of hours per day. For example, the C65 CARB microturbine operating on natural gas would have a NOx emissions rate of: NOx = .17 X (65/1000) X 24 = .27 pounds per day This would be representative of operating the equipment full time, 24 hours per day, at full power output of 65 kWe. As a general rule, if local permitting is required, use the published agency levels as the stated emissions for the permit and make sure that this permitted level is above the calculated values in this technical reference. # Consideration of Useful Thermal Output Capstone microturbines are often deployed where their clean exhaust can be used to provide heating or cooling, either directly or using hot water or other heat transfer fluids. In this case, the local permitting or standards agencies will usually consider the emissions from traditional heating sources as being displaced by the useful thermal output of the microturbine exhaust energy. This increases the useful output of the microturbine, and decreases the relative emissions of the combined heat and power system. For example, the CARB version C65 ICHP system with integral heat recovery can achieve a total system efficiency of 70% or more, depending on inlet water temperatures and other installation-specific characteristics. The electric efficiency of the CARB version C65 microturbine is 28% at ISO conditions. This means that the total NOx output based emissions, including the captured thermal value, is the electric-only emissions times the ratio of electric efficiency divided by total system efficiency: $NOx = .17 \times 28/70 =
.068$ pounds per MWh (based on total system output) This is typically much less than the emissions that would result from providing electric power using traditional central power plants, plus the emissions from a local hot water heater or boiler. In fact microturbine emissions are so low compared with traditional hot water heaters that installing a Capstone microturbine with heat recovery can actually decrease the local emissions of NOx and other criteria pollutants, without even considering the elimination of emissions from a remote power plant. ### Greenhouse Gas Emissions Many gasses are considered "greenhouse gasses", and agencies have ranked them based on their global warming potential (GWP) in the atmosphere compared with carbon dioxide (CO₂), as well as their ability to maintain this effect over time. For example, methane is a greenhouse gas with a GWP of 21. Criteria pollutants like NOx and organic compounds like methane are monitored by local air permitting authorities, and are subject to strong emissions controls. Even though some of these criteria pollutants can be more troublesome for global warming than CO₂, they are released in small quantities – especially from Capstone microturbines. So the major contributor of concern is carbon dioxide, or CO₂. Emission of CO₂ depends on two things: - 1. Carbon content in the fuel - 2. Efficiency of converting fuel to useful energy It is for these reasons that many local authorities are focused on using clean fuels (for example natural gas compared with diesel fuel), achieving high efficiency using combined heat and power systems, and displacing emissions from traditional power plants using renewable fuels like waste landfill and digester gasses. Table 5 shows the typical CO₂ emissions due to combustion for different Capstone microturbine models at full power and ISO conditions. The values do not include CO₂ that may already exist in the fuel itself, which is typical for renewable fuels like landfill and digester gas. These values are expressed on an output basis, as is done for criteria pollutants in Table 1. The table shows the pounds per megawatt hour based on electric power output only, as well as considering total useful output in a CHP system with total 70% efficiency (LHV). As for criteria pollutants, the relative quantity of CO₂ released is substantially less when useful thermal output is also considered in the measurement. Table 5. CO₂ Emission for Capstone Microturbine Models in [lb/MWh] | Model | Fuel | С | O ₂ | |-----------------|------------------|---------------|----------------| | | | Electric Only | 70% Total CHP | | C30 NG | Natural Gas (1) | 1,690 | 625 | | CR30 MBTU | Landfill Gas (1) | 1,690 | 625 | | CR30 MBTU | Digester Gas (1) | 1,690 | 625 | | C30 Liquid | Diesel #2 (2) | 2,400 | 855 | | C65 NG Standard | Natural Gas (1) | 1,520 | 625 | | C65 NG Low NOx | Natural Gas (1) | 1,570 | 625 | | C65 NG CARB | Natural Gas (1) | 1,570 | 625 | | CR65 Landfill | Landfill Gas (1) | 1,520 | 625 | | CR65 Digester | Digester Gas (1) | 1,520 | 625 | | C200 NG | Natural Gas (1) | 1,330 | 625 | | C200 NG CARB | Natural Gas (1) | 1,330 | 625 | | CR200 Digester | Digester Gas (1) | 1,330 | 625 | #### Notes: - (1) Emissions due to combustion, assuming natural gas with CO₂ content of 117 lb/MMBTU (HHV) - (2) Emissions due to combustion, assuming diesel fuel with CO₂ content of 160 lb/MMBTU (HHV) # **Useful Conversions** The conversions shown in Table 6 can be used to obtain other units of emissions outputs. These are approximate conversions. Table 6. Useful Unit Conversions | From | Multiply By | To Get | |---------------|-------------|---------------| | lb/MWh | 0.338 | g/bhp-hr | | g/bhp-hr | 2.96 | lb/MWh | | lb | 0.454 | kg | | kg | 2.20 | lb | | kg | 1,000 | g | | hp (electric) | .746 | kW | | kW | 1.34 | hp (electric) | | MW | 1,000 | kW | | kW | 0.001 | MW | ## **Definitions** - ISO conditions are defined as: 15 °C (59 °F), 60% relative humidity, and sea level pressure of 101.3 kPa (14.696 psia). - HHV: Higher Heating Value - LHV: Lower Heating Value - kW_{th}: Kilowatt (thermal) - kW_e: Kilowatt (electric) - MWh: Megawatt-hour - hp-hr: horsepower-hour (sometimes referred to as "electric horsepower-hour") - Scf: Standard cubic foot (standard references ISO temperature and pressure) - m3: Normal cubic meter (normal references 0 °C and one atmosphere pressure) # Capstone Contact Information If questions arise regarding this technical reference, please contact Capstone Turbine Corporation for assistance and information: # Capstone Applications Toll Free Telephone: (866) 4-CAPSTONE or (866) 422-7786 Fax: (818) 734-5385 E-mail: applications@capstoneturbine.com Table 3.1-2a. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM STATIONARY GAS TURBINES | Emission Factors ^a - Uncontrolled | | | | | | |--|---|---------------------------|--|---------------------------|--| | | Natural Gas-Fired Turbines ^b | | Distillate Oil-Fired Turbines ^d | | | | Pollutant | (lb/MMBtu) ^c
(Fuel Input) | Emission Factor
Rating | (lb/MMBtu) ^e
(Fuel Input) | Emission Factor
Rating | | | CO ₂ ^f | 110 | A | 157 | A | | | N_2O | 0.003 ^g | E | ND | NA | | | Lead | ND | NA | 1.4 E-05 | С | | | SO_2 | 0.94S ^h | В | 1.01S ^h | В | | | Methane | 8.6 E-03 | С | ND | NA | | | VOC | 2.1 E-03 | D | 4.1 E-04 ^j | E | | | TOC^k | 1.1 E-02 | В | 4.0 E-03 ¹ | С | | | PM (condensible) | 4.7 E-03 ¹ | С | 7.2 E-03 ¹ | С | | | PM (filterable) | 1.9 E-03 ¹ | С | 4.3 E-03 ¹ | С | | | PM (total) | 6.6 E-03 ^l | С | 1.2 E-02 ¹ | С | | ^a Factors are derived from units operating at high loads (≥80 percent load) only. For information on units operating at other loads, consult the background report for this chapter (Reference 16), available at "www.epa.gov/ttn/chief". ND = No Data, NA = Not Applicable. ^b SCCs for natural gas-fired turbines include 2-01-002-01, 2-02-002-01 & 03, and 2-03-002-02 & 03. ^c Emission factors based on an average natural gas heating value (HHV) of 1020 Btu/scf at 60°F. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by 1020. Similarly, these emission factors can be converted to other natural gas heating values. ^d SCCs for distillate oil-fired turbines are 2-01-001-01, 2-02-001-01, 2-02-001-03, and 2-03-001-02. ^e Emission factors based on an average distillate oil heating value of 139 MMBtu/10³ gallons. To convert from (lb/MMBtu) to (lb/10³ gallons), multiply by 139. Based on 99.5% conversion of fuel carbon to CO_2 for natural gas and 99% conversion of fuel carbon to CO_2 for distillate oil. CO_2 (Natural Gas) [lb/MMBtu] = (0.0036 scf/Btu)(%CON)(C)(D), where %CON = weight percent conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight, and D = density of fuel. For natural gas, C is assumed at 75%, and D is assumed at 4.1 E+04 lb/10⁶scf. For distillate oil, CO_2 (Distillate Oil) [lb/MMBtu] = (26.4 gal/MMBtu) (%CON)(C)(D), where C is assumed at 87%, and the D is assumed at 6.9 lb/gallon. g Emission factor is carried over from the previous revision to AP-42 (Supplement B, October 1996) and is based on limited source tests on a single turbine with water-steam injection (Reference 5). ^h All sulfur in the fuel is assumed to be converted to SO_2 . S = percent sulfur in fuel. Example, if sulfur content in the fuel is 3.4 percent, then S = 3.4. If S is not available, use 3.4 E-03 lb/MMBtu for natural gas turbines, and 3.3 E-02 lb/MMBtu for distillate oil turbines (the equations are more accurate). ^j VOC emissions are assumed equal to the sum of organic emissions. ^k Pollutant referenced as THC in the gathered emission tests. It is assumed as TOC, because it is based on EPA Test Method 25A. ¹ Emission factors are based on combustion turbines using water-steam injection. # GRI-HAPCalc ® 3.01 **Turbine Report** Facility ID: **IACX Roswell LLC** Notes: Operation Type: COMPRESSOR STATION **Facility Name: User Name:** Units of Measure: U.S. STANDARD Note: Emissions less than 5.00E-09 tons (or tonnes) per year are considered insignificant and are treated as zero. These emissions are indicated on the report with a "0". Emissions between 5.00E-09 and 5.00E-05 tons (or tonnes) per year are represented on the report with "0.0000". **Turbine Unit** Unit Name: CAPSTONE Hours of Operation: 8,760 Yearly Rate Power: 87 hp **NATURAL GAS** Fuel Type: Emission Factor Set: FIELD > EPA > LITERATURE -NONE-Additional EF Set: # **Calculated Emissions** (ton/yr) | | Company (Company) | | | | | | | |------------------------|-------------------|---------------------|----------------------------|--|--|--|--| | Chemical Name | Emissions | Emission Factor | Emission Factor Set | | | | | | <u>HAPs</u> | | | | | | | | | PAHs | 0.0000 | 0.00000970 g/bhp-hr | EPA | | | | | | Formaldehyde | 0.0142 | 0.01693680 g/bhp-hr | GRI Field | | | | | | Acetaldehyde | 0.0146 | 0.01733570 g/bhp-hr | GRI Field | | | | | | 1,3-Butadiene | 0.0001 | 0.00006160 g/bhp-hr | GRI Field | | | | | | Acrolein | 0.0002 | 0.00026000 g/bhp-hr | GRI Field | | | | | | Propional | 0.0007 | 0.00086500 g/bhp-hr | GRI Field | | | | | | Propylene Oxide | 0.0001 | 0.00012730 g/bhp-hr | EPA | | | | | | Benzene | 0.0005 | 0.00053840 g/bhp-hr | GRI Field | | | | | | Toluene | 0.0003 | 0.00041100 g/bhp-hr | GRI Field | | | | | | Ethylbenzene | 0.0001 | 0.00014050 g/bhp-hr | EPA | | | | | | Xylenes(m,p,o) | 0.0010 | 0.00124410 g/bhp-hr | GRI Field | | | | | | 2,2,4-Trimethylpentane | 0.0013 | 0.00160530 g/bhp-hr | GRI Field | | | | | | n-Hexane | 0.0013 | 0.00150580 g/bhp-hr | GRI Field | | | | | | Phenol | 0.0001 | 0.00011010 g/bhp-hr | GRI Field | | | | | | Naphthalene | 0.0000 | 0.00000760 g/bhp-hr | GRI Field | | | | | | 2-Methylnaphthalene | 0.0000 | 0.00000130 g/bhp-hr | GRI Field | | | | | | Biphenyl | 0.0003 | 0.00033050 g/bhp-hr | GRI Field | | | |
| | Phenanthrene | 0.0000 | 0.00000050 g/bhp-hr | GRI Field | | | | | | Chrysene | 0.0000 | 0.00000100 g/bhp-hr | GRI Field | | | | | | Beryllium | 0.0000 | 0.00000010 g/bhp-hr | GRI Field | | | | | | Phosphorus | 0.0001 | 0.00006520 g/bhp-hr | GRI Field | | | | | | Chromium | 0.0000 | 0.00000820 g/bhp-hr | GRI Field | | | | | | Manganese | 0.0000 | 0.00001750 g/bhp-hr | GRI Field | | | | | | Nickel | 0.0000 | 0.00000610 g/bhp-hr | GRI Field | | | | | | Cobalt | 0.0000 | 0.00000160 g/bhp-hr | GRI Field | | | | | | Arsenic | 0.0000 | 0.00000060 g/bhp-hr | GRI Field | | | | | | Selenium | 0.0000 | 0.00000030 g/bhp-hr | GRI Field | | | | | | 17 16:59:38 | GRI-HAPC | alc 3.01 | Page 1 of 2 | | | | | 07/27/201 | | Cadmium | 0.0000 | 0.00000020 | g/bhp-hr | GRI Field | |------------|---------------------------|----------|--------------|----------|-----------| | | Mercury | 0.0000 | 0.00000270 | g/bhp-hr | GRI Field | | | Lead | 0.0000 | 0.00000340 | g/bhp-hr | GRI Field | | Total | · | 0.0349 | | | | | <u>Cri</u> | teria Pollutants | | | | | | | PM | 0.0243 | 0.02897200 | g/bhp-hr | EPA | | | СО | 1.7696 | 2.10828420 | g/bhp-hr | GRI Field | | | NMHC | 0.1627 | 0.19387800 | g/bhp-hr | GRI Field | | | NMEHC | 0.0077 | 0.00921840 | g/bhp-hr | EPA | | | NOx | 1.0510 | 1.25216290 | g/bhp-hr | GRI Field | | | SO2 | 0.0009 | 0.00102720 | g/bhp-hr | GRI Field | | <u>Oth</u> | ner Pollutants | | | | | | | Methane | 0.8286 | 0.98719230 | g/bhp-hr | GRI Field | | | Acetylene | 0.0060 | 0.00716540 | g/bhp-hr | GRI Field | | | Ethylene | 0.0117 | 0.01395450 | g/bhp-hr | GRI Field | | | Ethane | 0.1260 | 0.15008370 | g/bhp-hr | GRI Field | | | Propane | 0.0134 | 0.01600000 | g/bhp-hr | GRI Field | | | Isobutane | 0.0040 | 0.00480000 | g/bhp-hr | GRI Field | | | Butane | 0.0044 | 0.00520000 | g/bhp-hr | GRI Field | | | Cyclopentane | 0.0014 | 0.00165110 | g/bhp-hr | GRI Field | | | Butyrald/Isobutyraldehyde | 0.0011 | 0.00134000 | g/bhp-hr | GRI Field | | | n-Pentane | 0.0681 | 0.08115000 | g/bhp-hr | GRI Field | | | Cyclohexane | 0.0051 | 0.00612400 | g/bhp-hr | GRI Field | | | Methylcyclohexane | 0.0074 | 0.00883120 | g/bhp-hr | GRI Field | | | n-Octane | 0.0027 | 0.00318890 | g/bhp-hr | GRI Field | | | 1,3,5-Trimethylbenzene | 0.0025 | 0.00300000 | g/bhp-hr | GRI Field | | | n-Nonane | 0.0004 | 0.00053260 | g/bhp-hr | GRI Field | | | CO2 | 405.2884 | 482.86607780 | g/bhp-hr | EPA | | | Vanadium | 0.0000 | 0.00000070 | g/bhp-hr | GRI Field | | | Copper | 0.0000 | 0.00002050 | g/bhp-hr | GRI Field | | | Molybdenum | 0.0000 | 0.00002030 | g/bhp-hr | GRI Field | | | Barium | 0.0000 | 0.00002290 | g/bhp-hr | GRI Field | | | | | | | | 07/27/2017 16:59:38 GRI-HAPCalc 3.01 Page 2 of 2 allowed to use Tier 1; (b) units that derive no more than 10 percent of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year. [78 FR page 71950, Nov. 29, 2013] Contact us at http://www.bna.com/contact-us or call 1-800-372-1033 #### ISSN 2167-8065 Copyright © 2016, The Bureau of National Affairs, Inc. Reproduction or redistribution, in whole or in part, and in any form, without express written permission, is prohibited except as permitted by the BNA Copyright Policy. ⁴ Reporters subject to subpart X of this part that are complying with § 98.243(d) or subpart Y of this part may only use the default HHV and the default CO_2 emission factor for fuel gas combustion under the conditions prescribed in § 98.243(d)(2)(i) and (d)(2)(ii) and § 98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4. $^{^5}$ Use the following formula to calculate a wet basis HHV for use in Equation C-1: HHV $_W$ = ((100 - M)/100)*HHV $_d$ where HHV $_W$ = wet basis HHV, M = moisture content (percent) and HHV $_d$ = dry basis HHV from Table C-1. #### Helium Recovery Unit Description of Representative Feed Analysis An explanation of the gas analysis that was used is below. The original mass balance was done using a calculated outlet gas composition from the JT skid that will be upstream feeding the NRU. From there we added in a helium estimate that is in the gas (about 0.4%) since this was not in the original gas sample that was used for the JT simulation. We removed the He increase from the methane composition. Then the data was normalized. Next, we increased the nitrogen to 7% since that is the highest expected nitrogen composition for the site. The increase on Nitrogen was subtracted proportionally (increased slightly in the case of helium) from the remaining components. Finally the compositions were normalized to give the final result. | | JT Skid
Outlet Gas | He Estimate Added
and Methane
Reduced | Normalized | N2 Increased and N2
Addition Adjusted
Proportionally | Normalized | |-------|-----------------------|---|------------|--|------------| | N2 | 4.40% | 4.40% | 4.40% | > 7.00% | 7.00% | | CO2 | 0.30% | 0.30% | 0.30% | 0.29% | 0.29% | | Не | 0.00% | > 0.40% | 0.40% | 0.41% | 0.41% | | C1 | 87.71% | > 87.31% | 87.34% | 85.06% | 84.95% | | C2 | 4.94% | 4.94% | 4.94% | 4.81% | 4.81% | | C3 | 1.77% | 1.77% | 1.77% | 1.72% | 1.72% | | iC4 | 0.25% | 0.25% | 0.25% | 0.25% | 0.24% | | nC4 | 0.43% | 0.43% | 0.43% | 0.42% | 0.42% | | iC5 | 0.08% | 0.08% | 0.08% | 0.08% | 0.08% | | nC5 | 0.07% | 0.07% | 0.07% | 0.07% | 0.07% | | n-C6+ | 0.02% | 0.02% | 0.02% | 0.02% | 0.01% | | | 99.96% | 99.96% | 100.00% | 100.14% | 100.00% | On the following page is the source JT skid outlet gas composition before the adjustments above. This is the calculated composition of the gas that the NRU will be processing. # CG137-12 Gas Petroleum Engine 447 bkW (600 bhp) 1800 rpm 0.5 g/bhp-hr NOx or 1.0 g/bhp-hr NOx (NTE) #### CAT® ENGINE SPECIFICATIONS | V12, 4-Stroke-Cycle | | |--|--| | Emissions | NSPS 2010 | | | 137.2 mm (5.4 in) | | | 152.4 mm (6 in) | | | | | Compression Ratio | | | | Turbocharged-Aftercooled | | | nd) Counterclockwise | | Flywheel & Flywheel Hou | sing SAE No. 0 | | | | | Power per Displacement | 22.2 bhp/L | | Engine Weight ¹ | 2835 kg (6250 lb) | | Catalyst Weight ² | 81.6/88.5 kg (180/195 lb) | | Flywheel & Flywheel Hou | sing SAE No. 0 | | Capacity for Liquids — L | | | Cooling System ³ | 75 L (20 U.S. gal) | | |) | | Oil Change Interval ⁴ | 750 hours | | Governor | Electronic ADEM™ A4 | | Ignition, Protection | Electronic ADEM A4 | | Air/Fuel Ratio Control | Electronic ADEM A4 | | ¹ Engine only, dry | | | ² 1 g and 0.5 g, respectively | ⁴ Can be extended through S•O•S sM program | #### **FEATURES** #### **Engine Design** - Tough and durable, with field-proven head design - Caterpillar supplied air/fuel ratio control and threeway catalyst designed specifically for this engine to provide superior emissions control with NSPS and Non-Attainment zone compliance - 0.5 g and 1 g NOx settings available - Integrated operator interface panel, TWC and AFRC reduces hands-on time with the engine - Operator interface panel allows setup and servicing without a laptop - Runs on a broad range of fuels and speeds at any emissions level - Factory installed components with single connection point eases packaging #### **Advanced Digital Engine Management** The ADEM A4 system represents the next generation of engine management systems while reducing the number of mechanical components and easing troubleshooting. Features include: - Air/Fuel Ratio Control (AFRC) - Electronic ignition - Electronic governing/speed control - Start/stop logic - Engine protection & monitoring #### **Full Range of Attachments** Large variety of factory-installed engine attachments reduces packaging time #### Gas Engine Rating Pro (GERP) GERP is a PC-based program designed to provide site performance capabilities for Cat® natural gas engines for the gas compression industry. GERP provides engine data for your site's altitude, ambient temperature, fuel, engine coolant heat rejection, performance data, installation drawings, spec sheets, and pump curves. # Product Support Offered Through Global Cat Dealer Network More than 2,200 dealer outlets Cat factory-trained dealer technicians service every aspect of your petroleum engine Caterpillar parts and labor warranty Preventive maintenance agreements available for repairbefore-failure options $S\hbox{-}O\hbox{-}S^{\tiny\text{SM}}$ program matches your oil and coolant samples against Caterpillar set standards to determine: - Internal engine component condition - Presence of unwanted fluids - Presence of combustion by-products - Site-specific oil change interval ## Over 80 Years of Engine Manufacturing Experience Over 60 years of natural gas engine production Ownership of these manufacturing processes enables Caterpillar to produce high quality, dependable products. - Cast engine blocks, heads, cylinder liners, and flywheel housings - Machine critical components - Assemble complete engine #### Web Site For all your petroleum power requirements, visit www.catoilandgasinfo.com. LEHW0119-01 Page 1 of 4 ### CG137-12 GAS PETROLEUM ENGINE 447 bkW (600 bhp) #### STANDARD EQUIPMENT #### **Air Inlet System** Air cleaner — single element with service indicator Optional air inlet adapter and rain cap recommended for weather protection #### **Control System** ADEM A4 Class 1, Division 2, Group C&D and Zone 2 #### **Cooling System** Jacket water thermostats and housing — full open temperature 98°C (208°F) Jacket water pump — gear driven, centrifugal, non-self-priming Aftercooler water pump — gear driven, centrifugal, non-self-priming Aftercooler core — for treated water and sea air atmosphere #### **Exhaust System** Exhaust manifolds — watercooled Exhaust elbow — dry 203 mm (8 in) Three-way catalyst — 1.0 g NOx
and 0.5 g NOx NTE options #### Flywheels & Flywheel Housings Flywheel, SAE No. 0 Flywheel housing, SAE No. 0 SAE standard rotation #### **Fuel System** Air/fuel ratio control Gas pressure regulator Natural gas carburetor #### **Lube System** Crankcase breather — top mounted Oil cooler Oil filter — RH Oil filler in valve cover, dipstick - RH #### **Mounting System** Engine mounting rails — 254 mm (10 in) industrialtype, entire length #### **Protection System** ADEM A4 protection The following include alarm and shutdown: - inlet manifold air temperature - inlet manifold air pressure - oil pressure - oil temperature - coolant temperature - engine speed (overspeed) - battery voltage - catalyst inlet/outlet temperature (sensors shipped loose) The following is display only - service hours #### General Paint, Caterpillar yellow Crankshaft vibration damper and drive pulleys Lifting eyes Cylinder block inspection covers #### **OPTIONAL EQUIPMENT** #### **Charging Alternator** 24V, 35A CSA alternator* #### **Exhaust System** Exhaust flex fitting Exhaust elbow Exhaust flange — ANSI #### Instrumentation Operator interface panel Operator interface panel enclosure 15', 20', 50' interconnect harness *CSA certification pending final approval #### Starting System Air pressure regulator Air start silencer Vane starter Electric starter Turbine starter #### **Fuel System** Fuel filter #### Air Inlet System Precleaner Rain cap LEHW0119-01 Page 2 of 4 447 bkW (600 bhp) # **TECHNICAL DATA** # CG137-12 Gas Petroleum Engine — 1800 rpm | | | DM9291-00
0.5 g NOx NTE | DM9292-00
1.0 g NOx NTE | |--|---|-------------------------------------|---------------------------------------| | Engine Power
@ 100% Load | bkW (bhp) | 448 (600) | 448 (600) | | Engine Speed Max Altitude @ Rated Torque and 38°C (100°F) Speed Turndown @ Max Altitude, | rpm
m (ft) | 1800
1524 (5000) | 1800
1524 (5000) | | Rated Torque, and 38°C (100°F) | % | 18 | 18 | | Aftercooler Temperature JW Temperature SCAC Temperature | °C (°F)
°C (°F) | 99 (210)
54 (130) | 99 (210)
54 (130) | | Compression Ratio | | 8.3:1 | 8.3:1 | | Emissions (NTE)* NOx CO VOC** | g/bkW-hr (g/bhp-hr)
g/bkW-hr (g/bhp-hr)
g/bkW-hr (g/bhp-hr) | 1.34 (1)
2.68 (2)
0.31 (0.23) | .067 (0.5)
2.68 (2)
0.31 (0.23) | | Fuel Consumption*** @ 100% Load | MJ/bkW-hr (Btu/bhp-hr | 10.47 (7400) | 10.47 (7400) | | Heat Balance Heat Rejection to Jacket Water JW & OC | bkW (Btu/min) | 407 (23,129) | 407 (23,129) | | Heat Rejection to Aftercooler @ 100% Load | bkW (Btu/min) | 33 (1895) | 33 (1895) | | Heat Rejection to Exhaust @ 100% Load | bkW (Btu/min) | 301 (17,091) | 301 (17,091) | | Heat Rejection to Atmosphere
@ 100% Load | bkW (Btu/min) | 52 (2961) | 52 (2961) | | Intake System Air Inlet Flow Rate | | | | | @ 100% Load | N•m³/min (scfm) | 20.73 (800) | 20.73 (800) | | Gas Pressure | kPag (psig) | 10-34 (1.5-5.0) | 10-34 (1.5-5.0) | ^{*}at 100% load and speed, listed as not to exceed LEHW0119-01 Page 3 of 4 $[\]ensuremath{^{**}}\mbox{Volatile}$ organic compounds as defined in U.S. EPA 40 CFR 60, subpart JJJ ^{***}ISO 3046/1 447 bkW (600 bhp) #### **GAS PETROLEUM ENGINE** Note: Dimensions are in mm (inches). | DIMENSIONS | | | | | | |------------|---------|---------|--|--|--| | Length | 2092 mm | 82.4 in | | | | | Width | 1423 mm | 56 in | | | | | Height | 1778 mm | 70 in | | | | #### **RATING DEFINITIONS AND CONDITIONS** Engine performance is obtained in accordance with SAE J1995, ISO3046/1, BS5514/1, and DIN6271/1 standards. Transient response data is acquired from an engine/ generator combination at normal operating temperature and in accordance with ISO3046/1 standard ambient conditions. Also in accordance with SAE J1995, BS5514/1, and DIN6271/1 standard reference conditions. Conditions: Power for gas engines is based on fuel having an LHV of 33.74 kJ/L (905 Btu/cu ft) at 101 kPa (29.91 in Hg) and 15°C (59°F). Fuel rate is based on a cubic meter at 100 kPa (29.61 in Hg) and 15.6°C (60.1°F). Air flow is based on a cubic foot at 100 kPa (29.61 in Hg) and 25°C (77°F). Exhaust flow is based on a cubic foot at 100 kPa (29.61 in Hg) and stack temperature. #### **ICE Catalyst Sizing Program** ENGINE INPUT (Manufacturer, Model, Type) - - EXPERT MODE | lbs/hr
4,046
600 | "scfm" | | | | | | | |------------------------|---|---------------------|--------------------|---|--|---|---| | 4,046
600 | | "scfh" | "acfm" | "acfh" | Estimate | ed Exhaust Gas Com | nposition | | 600 | 004 | 53,032 | 2553 | 153,180 | N2 | 74.5 | vol% | | | | | | | O2 | 0.4 | vol% | | | | Maximum Press | sure Drop (in) | 3 | H2O | 10 | vol% | | 28.50 | | 0.026 | Exhaust Der | nsity (lbs/ft3) | CO2 | 10 | vol% | | | | mol% propane | e in fuel gas: | 0.000 | | | | | | | | | | | | | | | Enter permitted gra | ams per brake horse | power hour (g/bhp- | ·hr) | | | | | 1042 | NOx** | | CO** | | VOC(NMNE)** | | H2CO** | | | 0.5 | | 0.5 | | .0735 | | | | | Catalyat Madyla D | ataila | | | | | | | | | | | Module/Layer | 1 | Lavers | 1 | | | | | Diam (inch) | | ' | | 300s | | | | ind | Diam (inch) | 15.50 | | | 3.5 | | | Juana Dea - NO | | | Part Number | | Берин | 3.3 | | | | | | | | | | | 2.07 | | | | | | | | | 1,231 | Calculated Sp | pace Velocity: | 87,670 | | Safety Value | 2 | | | 0.002 | | | | | | | | | | Inlet Pollutants | 0.05 | | | | | | | | | 2.05 | | | | | | | | | | H2CO | .07 | 0.09 | 0.41 | 22.06 | 7.05 | | | | Required Output P | ollutants | | | | | | | | | g/bhp-hr | lb/hr | tons/year | ppmv | ppmvd%O2* | | | 95.0% | NOx | 0.5 | 0.66 | 2.90 | 102.75 | 32.86 | | | 95.0% | CO | 0.5 | 0.66 | 2.90 | 168.81 | 53.98 | | | 79.0% | VOC | .0735 | 0.10 | 0.43 | 15.76 | 5.04 | | | 0% | H2CO | .07 | 0.00 | 0.00 | NaN | NaN | | | | 0 | | | | | | | | | Output Pollutants v | | lb/br | tons/year | nnmy | nnmvd%/ 02* | | | 95.0% | NOx | | | | | | | | | | | | | | | | | 79.0% | voc | .0735 | 0.10 | 0.43 | 15.76 | 5.04 | | | 0% | H2CO | .07 | 0.00 | 0.00 | NaN | NaN | | | | 2.07
1,231
0.002
2.05
95.0%
95.0%
79.0%
0% | 1042 NOx** 0.5 | 1042 NOx+* 0.5 | 1042 NOx** CO** 0.5 0.5 0.5 0.5 0.5 1.231 Calculated Space Velocity: 87,670 Output Pollutants | 1042 NOx** CO** 0.5 0.5 0.5 0.5 0.5 Catalyst Module Details Module Shape Round Diam (inch) Round Diam (inch) 19.50 Part Number Numb | 1042 NOx** CO** VOC(NMNE)** 0.5 | 1042 NOx** CO** VOC(NMNE)** 0.5 | Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES $^{\rm a}$ (SCC 2-02-002-53) | Pollutant | Emission Factor (lb/MMBtu) ^b (fuel input) | Emission Factor
Rating | |------------------------------------|--|---------------------------| | Criteria Pollutants and Greenhous | se Gases | | | NO _x c 90 - 105% Load | 2.21 E+00 | A | | NO _x c <90% Load | 2.27 E+00 | С | | CO ^c 90 - 105% Load | 3.72 E+00 | A | | CO ^c <90% Load | 3.51 E+00 | С | | CO_2^{d} | 1.10 E+02 | A | | SO ₂ ^e | 5.88 E-04 | A | | TOC^{f} | 3.58 E-01 | С | | Methane ^g | 2.30 E-01 | С | | VOCh | 2.96 E-02 | С | | PM10 (filterable) ^{i,j} | 9.50 E-03 | Е | | PM2.5 (filterable) ^j | 9.50 E-03 | Е | | PM Condensable ^k | 9.91 E-03 | Е | |
Trace Organic Compounds | | | | 1,1,2,2-Tetrachloroethane | 2.53 E-05 | С | | 1,1,2-Trichloroethane ¹ | <1.53 E-05 | E | | 1,1-Dichloroethane | <1.13 E-05 | Е | | 1,2-Dichloroethane | <1.13 E-05 | Е | | 1,2-Dichloropropane | <1.30 E-05 | Е | | 1,3-Butadiene ^l | 6.63 E-04 | D | | 1,3-Dichloropropene ¹ | <1.27 E-05 | Е | | Acetaldehyde ^{l,m} | 2.79 E-03 | С | | Acrolein ^{1,m} | 2.63 E-03 | С | | Benzene | 1.58 E-03 | В | | Butyr/isobutyraldehyde | 4.86 E-05 | D | | Carbon Tetrachloride ¹ | <1.77 E-05 | E | Table 3.2-3. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE RICH-BURN ENGINES (Concluded) | Pollutant | Emission Factor
(lb/MMBtu) ^b
(fuel input) | Emission Factor
Rating | |---------------------------------|--|---------------------------| | Chlorobenzene | <1.29 E-05 | Е | | Chloroform | <1.37 E-05 | Е | | Ethane ⁿ | 7.04 E-02 | С | | Ethylbenzene ¹ | <2.48 E-05 | E | | Ethylene Dibromide ^l | <2.13 E-05 | Е | | Formaldehyde ^{l,m} | 2.05 E-02 | A | | Methanol ¹ | 3.06 E-03 | D | | Methylene Chloride ^l | 4.12 E-05 | C | | Naphthalene | <9.71 E-05 | Е | | PAH ^l | 1.41 E-04 | D | | Styrene ¹ | <1.19 E-05 | E | | Toluene | 5.58 E-04 | A | | Vinyl Chloride ^l | <7.18 E-06 | Е | | Xylene ^l | 1.95 E-04 | A | Reference 7. Factors represent uncontrolled levels. For NO_x , CO, and PM-10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM10 = Particulate Matter \leq 10 microns (μ m) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit. b Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA Method 19. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from (lb/MMBtu) to (lb/hp-hr) use the following equation: lb/hp-hr = db/MMBtu, heat input, MMBtu/hr, d1/operating HP, 1/hp, ^c Emission tests with unreported load conditions were not included in the data set. ^d Based on 99.5% conversion of the fuel carbon to CO₂. CO₂ [lb/MMBtu] = (3.67)(%CON)(C)(D)(1/h), where %CON = percent conversion of fuel carbon to CO₂, # CATERPILLAR # Gas Industrial Engine # G3516 660-1340 hp Standard and Low Emission | nited | |-----------------------| | 6.7 (170) | | | | 4211 (69.0) | | | | 9:1 | | 8:1 | | aturally Aspirated or | | charged-Aftercooled | | | | | | | | | | _) | | | | | - * Oil fill capacity with 21 elements - **Oil fill capacity without elements #### **FEATURES** #### **■ DIESEL STRENGTH** All Caterpillar® gas engines are built on diesel frames which means greater service life. Caterpillar gas engines inherit more from their diesel counterparts than just strength. They are backed by the same support system recognized as one of the most sophisticated and dependable in the world. #### **■ APPLICATION FLEXIBILITY** Broad operating speed range and ability to burn a wide spectrum of gaseous fuels. #### **■ LOW EMISSIONS** Low emission engines are capable of NO(x) levels as low as 2.0 grams/hp-hr. Lower emissions may be achievable for selected applications. Consult your Caterpillar dealer. #### ■ CATERPILLAR® GAS ENGINES Represent the latest technology in engine design. Engines are offered in both naturally aspirated and turbocharged/aftercooled configurations. TA is offered as standard and low emission. These different configurations offer: - High energy ignition systems for consistent firing - High efficient combustion chamber for complete burning of the fuel. - Modern component design such as deep cup, oil gallery piston. # ■ ELECTRONIC IGNITION SYSTEM WITH DETONATION SENSITIVE TIMING The Caterpillar electronic ignition system provides optimized spark timing for all operating conditions. Timing is automatically controlled to maintain continuous detonation protection. # **CATERPILLAR** # **G3516** GAS INDUSTRIAL ENGINE #### STANDARD EQUIPMENT Air cleaners single stage, dry, with service indicator Breather, crankcase Carburetor natural gas Cooler lubricating oil Filter lubricating oil, RH Flywheel housing SAE No. 00 Governor Woodward Ignition system Altronic III Instrument panel, RH 8 gauge panel (STD) 12 gauge panel (LE) oil pressure coolant temperature oil pressure differential intake manifold temp (TA only) pressure (LE) service meter exhaust pyrometer (LE) Lifting eyes Manifold, exhaust watercooled Pumps, gear driven aftercooler water (TA only) iacket water Rails, mounting, 10 in. Regulator, gas pressure SAE standard rotation Thermostats and housing Torsional vibration damper #### **OPTIONAL EQUIPMENT** Cooling systems high temp (LE only) Exhaust fittings Muffler Power takeoffs Starting systems Tachometer Low BTU arrangements Landfill arrangements Air head for 3161 CSA ignition Air-to-air aftercooler connection #### **CONTINUOUS RATINGS (BHP)** | Aspiration | 1400 rpm | 1300 rpm | 1200 rpm | 1100 rpm | 1000 rpm | 900 rpm | |------------|--------------|----------|----------|----------|----------|---------| | LE-90 | 1340 | 1245 | 1150 | 1050 | 955 | 860 | | LE-130 | 1265 | 1175 | 1085 | 995 | 900 | 810 | | STD TA-90 | - | | 1085 | 995 | 905 | 815 | | STD TA-130 | _ | | 1050 | 960 | 875 | 785 | | STD NA | _ | - | 660 | 605 | 585 | 525 | #### **PHYSICAL FACTORS** | | Height
in (mm) | Width
in (mm) | Length
in (mm) | Weight
Ib (kg) | |--------|-------------------|------------------|-------------------|-------------------| | LE | 73.2 (1859) | 67.1 (1703) | 131 (3327) | 17 670 (8022) | | STD TA | 73.2 (1859) | 67.1 (1703) | 131 (3327) | 17 470 (7931) | | STD NA | 75.2 (1911) | 61.6 (1564) | 126.4 (3211) | 16 400 (7446) | ## G3516 GAS INDUSTRIAL ENGINE #### **FUEL CONSUMPTION** #### LE-90 #### LE-130 #### STD TA-90 #### STD TA-130 #### STD NA LE refers to low emission engine configuration. STD refers to standard engine configuration. 90 refers to aftercooler water inlet temperature in 90° F (32° C). 130 refers to aftercooler water inlet temperature in 130° F (54° C). All data is based on standard conditions. 77° F (25° C) 500 ft Alt. These ratings do not allow for overload capability. #### GAS INDUSTRIAL ENGINE PHYSICAL FACTORS 01 Centerline of Crankshaft 04) Jacket Water Outlet 101) Air Inlet 02 Centerline of Engine (125) Aftercooler water inlet 402) Exhaust 03 Rear face of Cylinder Block (126) Aftercooler water outlet (RD) Removal Distance (103) Jacket Water Inlet (201) Fuel Inlet See general dimension drawing 114-6637 for additional Electronic Ignition System (E.I.S.) engine detail and NA information. For magneto ignition system engines see general dimension drawing 7W4452. Note: General configuration not to be used for installation. #### **CONDITIONS AND DEFINITIONS** Ratings are based on SAE J1349 standard conditions of 29.61 in Hg (100 kPa) and 77° F (25° C). These ratings also apply at ISO3046, DIN6271, and BS5514 standard conditions of 29.61 in Hg (100 kPa), 81° F (27° C); and API 7B-11C standard conditions of 29.38 in Hg (99 kPa), 85° F (29° C). Ratings are based on dry natural gas having a low heat value of 905 btu/ft³ (35.54 MJ/N m³). Variations in altitude, temperature, and gas composition from standard conditions may require a reduction in engine horsepower. Turbocharged-aftercooled ratings apply to 5000 ft (1525 m) and 77° F (25° C). Naturally aspirated engines apply to 500 ft (150 m) and 77° F (25° C). For applications which exceed these limits, consult your Caterpillar dealer. Additional ratings may be available for specific customer requirements. Consult your Caterpillar representative for details. | | | | | TEDDU | 1 6 5 | 4 | (S.) |
--|--|------------------------------|--|---|----------|-------|---------| | G3516 LE Gas Industri | al Engine Perform | ance | U. | TERPIL | LAI | * | 935 | | Engine Speed (rpm) | 1400 | Fuel | | | NAT GAS | | eget Jr | | | 8:1 | LHV of Fue | (Btu/SCF) | • | 920 | | Euč | | Compression Ratio | 130 | Fuel System | = | HE | PG IMPCO | | | | Aftercooler Inlet Temperature (°F) | 210 | 7 | | | | į | | | Jacket Water Outlet Temperature (°F) | EIS | Minimum Fr | uel Pressure (psig) | | 35 | } | | | Ignition System | VATER COOLED | | imber at Conditions S | ihown | 80 | 1 | | | CAMPAGE MAINTING | LOW EMISSION | Rated Aithu | | | 5000 | Ę | Fue | | Combustion System Type | EOM EMICOICH | , | at 77°F Design Tempe | erature | | | - | | | est us connect on the estate of the other tree to the | e tempe was stocked a strain | the thereof to not the | 116 7590 | 50% | · chi | | | Engine Rating Data | | % Load | Control of the Contro | 948 | 632 | | | | Engine Power (w/ofan) | | bhp | 1265 | 946 | 000 | į | | | 5 | | | | | | 1 | | | | the second of th | | inabal disenting | - F 44 18 18 18 18 18 18 18 18 18 18 18 18 18 | | - | | | Engine Data | The state of s | Carlo Carlo Carlo Carlo | endina de la como | file within. | 8255 | 2 | Att | | Specific Fuel Consumption (BSFC) (1) | | Btu/bhp-hr | 7552 | 7711 | 1290 | Ť | 20. | | Air Flow (Wet, @ 7%F, 28.8 in Hg) | | SCFM | 2666 | 1930 | 5721 | | | | Air Mass Flow (Wel | | lb/hr | 11822 | 8557 | | | | | Compressor Out Pressure | | in. HG (abs) | 73.7 | 68.9 | 51.1 | • | | | Compressor Out Tamperature | | •F | 307 | 278 | 201 | | | | inlet Manifold Pressite | | in. HG (abs) | 64.8 | 48 | 32.9 | | | | Inlet Manifold Temperature (10) | | °F | 141 | 140 | 136 | | | | Timing (11) | | *BTDC | 33 | 33 | 33 | | | | Exhaust Stack Temperature | | °F | 869 | B62 | 865 | | | | Exhaust Gas Flow Wet, 9 stack temp | erature, 29.7 in Hg) | CFM | 7179 | 5179 | 3482 | | | | Exhaust Gas MassFlow (Wet) | | lb/h r | 12282 | 8909 | 5973 | • | | | and the second s | i i je na programa se se se se se se si | | 大学の大学の中では、大学であります。
1920年 - 日本の日本人ではなっていまっている。 | and with | 2 | 8 | | | Engine Emissions Data | | | 2.0 | ିଆନି :ିନ୍ଦି
4.5 | 8.1 | | | | Nitrous Oxides (NOs as NO2) (9) | | g/bhp-hr | 134 | 330 | 547 | | | | | (Corr. 15% 02) | ppm | 194 | 000 | | | A | | | | g/bhp-hr | 1.9 | 2.2 | 2.4 | | | | Carbon Monoxide (CO) (9) | 10 1EN 00\ | | 231 | 261 | 269 | | | | | (Corr. 15% 02) | ppm | | - | | | | | | | | | | 2.4 | | | | Total Hydrocarbons (THC) (9) | | g/bhp-hr | 2.9 | 2.4 | 476 | | | | • | (Corr. 15% 02) | ppm | 620 | 501 | 470 | | | | | | | 0.44 | 0.36 | 0.37 | | | | Non-Methane Hydrocarbons (NMHC) (S |)) | g/bhp-hr | 44 | 34 | 30 | : | | | | (Corr. 15% 02) | ppm | 44 | | | | | | Tubourt Ocours of Mi | | % | 8.3 | 7.5 | 6.4 | | | | Exhaust Oxygen (9) | | " ` | 1.58 | 1.50 | 1.40 | | | | Lambda | |] | | | | | | | Engine Heat Balance Data | | * | . 1 4 | * · · · · · · · · · · · · · · · · · · · | | | | | Input Energy LHV (1) | | Blu/min | 159152 | 121887 | 86992 | | | | Mosk Ontbrit | | Btu/min | 53653 | 40240 | 26826 | | | | Many certain | | 1 504-15-5- | 46771 | 39767 | 32901 | | | -ENGLISH- page 1 of 2 Btu/min Btu/min Btu/min Btu/min Btu/min 8tu/min DM5168-00. 39767 4428 32359 20502 5094 0 46771 5313 45181 28575 8235 0 32901 3543 21902 13904 1820 0 Heat Rejection to Jacket (2) (6) Heat Rejection to Lube Oil (5) Heat Rejection to Atmosphere (Radiated) (4) Total Heat Rejection (o Exhaust (to 77°F) (2) Heat Rejection to Exhaust (LHV to 850°F) (2) Heat Rejection to Afercooler (3) (7) (8) #### STANDARD FOUIPMENT AIR CLEANER - Two, dry type with rain shield and service indicator. BARRING DEVICE - Manual. BEARINGS - Heavy duty, replaceable, precision type. BREATHER -
Closed system. CONNECTING RODS - Drop forged steel, rifle drilled. CONTROL SYSTEM - Pneumatic. Includes pilot operated valves for air start and prelube. Engine mounted control panel with two push button valves. Pilot operated air start valves omitted when starter is not furnished by Waukesha. Includes engine On/Off push button. One mounted on either side of the engine. CRANKCASE – Integral crankcase and cylinder frame. Main bearing caps drilled and tapped for temperature sensors. Does not include sensors. CRANKSHAFT - Counterweighted, forged steel, seven main bearings, and dynamically balanced. CYLINDERS – Removable wet type cylinder liners, chrome plated on outer diameter. Induction hardened. CYLINDER HEADS - Twelve interchangeable, valve-in-head type. Two hard faced intake and two hard faced exhaust valves per cylinder. Hard faced intake and exhaust valve seat inserts. Roller valve lifters and hydraulic push rods. ENGINE ROTATION - Counterclockwise when facing flywheel. ENGINE MONITOR DEVICES – Engine thermocouples, K-type, for jacket water temperature and lube oil temperature. Magnetic pickup wired for customer supplied tachometer. Lube oil pressure and intake manifold pressure sensing lines are terminated in a common bulk head. FLYWHEEL – Approx. WR² = 155000 lb-in², with ring gear (208 teeth), machined to accept two drive adapters: 31.88" (810 mm) pilot bore, 30.25" (768 mm) bolt circle, (12) 0.75"–10 tapped holes; or 28.88" (734 mm) pilot bore, 27.25" (692 mm) bolt circle, (12) 0.625"–11 tapped holes and (12) 0.75"–10 tapped holes. FUEL SYSTEM - Dual, natural gas, 4" (102 mm) updraft. Two Fisher Model S-201, 2" (51 mm) gas regulators, 12 psi (83 kPa) maximum inlet pressure. FLYWHEEL HOUSING - No. 00 SAE. GOVERNOR - Woodward UG-8 LD hydraulic lever type, with friction type speed control. Mounted on right hand side. IGNITION – Waukesha Custom Engine Control[®] Ignition Module. Electronic digital ignition system. 24V DC power required. LEVELING BOLTS LIFTING EYES LUBRICATION – Full pressure. Gear type pump. Full flow filter, 36 gallon (136 litres) capacity, not mounted. Includes flexible connections. Includes lube oil strainer, mounted on engine. Air/gas motor driven prelube pump. Requires final piping. MANIFOLDS – Exhaust, (2) water cooled with single vertical 8 inch (203 mm) flange at rear, and flexible stainless steel exhaust connection. OIL COOLER - With thermostatic temperature controller and pressure regulating valve. Not mounted, OIL PAN - Base type, 78 gallon (295 litres) capacity including filter. PAINT - Oilfield orange primer. PISTONS - Aluminum with floating pin. Standard 8:1 compression ratio. Oil cooled. SHIPPING SKID - Steel for domestic truck or rail. VIBRATION DAMPER - Viscous type. Guard included with remote mounted radiator or no radiator. #### WATER CIRCULATING SYSTEM Auxiliary Circuit - For oil cooler. Pump is belt driven from crankshaft pulley. Engine Jacket – Belt driven water circulating pump, cluster type thermostatic temperature regulating valve, full flow bypass type. Flange connections and mating flanges for (2) 4" (102 mm) inlets and (1) 5" (127 mm) outlet. WAUKESHA CUSTOM ENGINE CONTROL®, DETONATION SENSING MODULE (DSM) – Includes individual cylinder sensors, Detonation Sensing Module, filter and cables. Device is compatible with Waukesha CEC Ignition Module only. Sensors are mounted and wired to engine junction box. Detonation Sensing Module and filter are shipped loose. One 11 ft. cable provided for connection between engine junction box and filter. One each 15 ft. cable provided for connection between filter and DSM and Ignition Module and DSM. One 20 ft. cable provided for power and ground for filter. All cables are shipped loose. Packager is responsible for power supply and ground to the DSM. 24V DC power is required. The DSM meets Canadian Standards Association Class 1, Group D, Division 2, hazardous location requirements. # L7042G/GSI VHP Series Gas Engine 748 - 1920 BHP Model L7042G Naturally Aspirated Model L7042GSI Turborcharged and Intercooled, Twelve Cylinder, Four-Cycle Gas Engine # **SPECIFICATIONS** Cylinders V 12 Piston Displacement 7040 cu. in. (115 L) Bore & Stroke 9.375" x 8.5" (238 x 216 mm) Compression Ratio 8.2:1 Jacket Water System Capacity 73 gal. (276 L) Lube Oil Capacity 73 gal. (276 L) Starting System 125 - 150 psi air/gas 24/32 V electric Dry Weight G Models 20,500 lb. (9300 kg) GSI Models 21,000 lb. (9525 kg) ## POWER RATINGS: L7042G/GSI VHP SERIES GAS ENGINES | l.c. | Ma. | | | Brake | Horsepo | wer | | |-------------------------------|---|--------------------------------|---------------------|---------------------|----------------------|-----------------------|--| | Water
Inlet
Model Temp. | Bore &
Stroke
C.R. in.(mm) | Displ.
cu. in.
(litres) | 700 rpm | 800 rpm | 900 rpm
I C | 1000 rpm
I C | 1100 rpm 1200 rpm | | L7042GSI 130° F
L7042G | 8.1 9.375×85/238×216
8.1 9.375×85/238×216
10.1 9.375×85/238×216
8.1 9.375×85/238×216 | 5) 7040 (115)
6) 7040 (115) | 1070 862
722 642 | 1223 985
824 732 | 1376 1108
920 818 | 1528 1232
1008 896 | 1760 1418 1920 1547
1681 1355 1834 1478
1087 966 1152 1024
974 866 1026 912 | Rating Standard: All models: Ratings are based on ISO 3046/1-1995 with mechanical efficiency of 90% and Tora (clause 10.1) as specified above limited to + 10° F (5° C). Ratings are also valid for SAE J1349, 895514, DIN6271 and AP17B-11C standard atmospheric conditions. Intermittent Service Rating: The highest load and speed which can be applied in variable speed mechanical system application only. Operation at this rating is limited to a maximum of 3500 hours per year. ISO Standard Power/Continuous Power Rating: The highest load and speed which can be applied 24 hours a day, seven days a week, 365 days per year except for normal maintenance. It is permissible to operate the engine at up to 10% overload, or maximum load indicated by the intermittent rating, whichever is lower, for two hours in each 24 hour period. All natural gas engine ratings are based on a fuel of 900 Btu/ft³ (35.3 M.l/nm²) SLHV value, with a 119 octane (per ASTM D-2700 test method). Bulletin 7011 0799 WAUKESHA ENGINE DIVISION DRESSER EQUIPMENT GROUP, INC. 1000 West St. Paul Avenue Waukesha, WI 53188-4999 Phone: (414) 547-3311 Fax: (414) 549-2755 http://www.waukeshaengine.com WAUKESHA ENGINE DIVISION A DIVISION OF DRESSER INDUSTRIAL PRODUCTS, B.V. Farmsumerweg 43, Postbus 330 9900 AH Appingedam, The Netherlands Phone; (31) 596-652269 Fax: (31)596-624217 Consult your local Waukesha Distributor for system application assistance. The manufacturer reserves the right to change or modify without notice, the design or equipment specifications as herein set forth without incurring any obligation either with respect to equipment previously sold or in the process of construction except where otherwise specifically quaranteed by the manufacturer. #### HEAT REJECTION AND OPERATING DATA MODEL L7042GSI 130° F INTERCOOLER WATER STOICHIOMETRIC AIR/FUEL RATIO | | i | i ENGINÉ SPEED – RPM | | | | | | | |---------------------------------------|-----------------|----------------------|-----------------|--------------|------------|------------|------------------|-------------| | | BMER | | | | | 2 - AEM | | | | | (psl) | 500 | 700 | 800 | j
900e | 1000 | 1100 | 1200 | | | ! :72 | 917 | 1 1070 | :223 | ; :376 | :525 | : :681 | :83- | | | !52 | 911 | į 946 | :081 | :215 | :351 | : 486 | -62: | | POWER | 138 | 739 | 362 | . 385 | 1108 | :222 | :355 | :478 | | (BHP) | :25 | 367 | 778 | 389 | -000 | **** | :222 | :335 | | • | 100 | ; 533 | 522 | 711 | 300 | 389 | 3 78 | 1067 | | | 75 | ָ ייטיי | +67 | ļ 533 | 500 | 367 | 733 | i 300 | | | | 257 | 1 311 | 356 | +00 | مهد | -89 | 523 | | | 172 | 1 7123 | 7160 | ; 7:97 | 7292. | . 7366 | 7484 | ; 7502 | | | :52 | 7249 | 7285 | 7320 | 7401 | 7482 | 7603 | 7723 | | BRAKE SPECIFIC | :38 | 7355 | 7390 | 7424 | 7502 | rsat | 7703 | 7824- | | FUEL CONSUMPTION | :25 | 7484 | 7517 | ~550 | 7525 | | 7824 | 7948 | | (BTJ/BHP-HR) | 100 | 7815 | 7844 | : 7873 | 340 | 3006 | 3135 | 2255 | | | 75 | 3367 | 3389 | 5412 | 5464 | 5517 | 3655 | 3792 | | ~~~ | 50 | 7471 | 3480 | 3489 | 3513 | 2538 | ÷ 9693 | j 3545 | | | ; :72 | ; 5 530 | 7565 | . 3800 | :0030 | 1:255 | : :2500 | : 3940 | | | :52 | 5875 | 5895 | . T915 | 9010 | 10110 | 1:315 | :2520 | | FUEL. | :38 | 5435 | 5370 | 310 | 3320 | 3335 | :0445 | ::560 | | CONSUMPTION | :25 | 4990 | 5850 | 5710 | 7575 | 3555 | 3575 | :C595 | | (BTU/HR x 1000) | ÷ :∞a | 4170 | 4885 | 5500 | 5360 | 7115 | 7965 | 3815 | | • | 75 | 3345 | 3915 | . ±485 | 5080 | 5680 | ; ಮತ | 7ರ್ಯ | | | | : 2525 | 2950 | 2275 | 1805 | 454U | 4745 | 5250 | | | 172 | . 1780 | 1 2155 | 1550 | 2965 | 2280 | 3755 | 1 4:25 | | | : '52 | :625 | 980 | . 2230 | 2700 | 3075 | 3410 | 3745 | | HEAT TO | :38 | -530 | :855 | 2185 | 7575 | 2365 | 3175 | 3480 | | FETAW TEXOAL | į :25 į | :439 | ारङ | 2035 | 2245 | 2555 | 2945 | 3230 | | (ETU/HR x 1000) | :∞ | :257 | :510 | :750 | 2015 | 2270 | 2515 | 2755 | | | ा इ | :095 | 1289 | .483 | 685 | 1885 | 2080 | 2275 | | | 50 | 323 | 1065 | .552 | . 324 | 1500 | 550 ¹ | . 500 | | | ; 17 2 ; | 221 | 354 | 296 | 317 | 338 | 350 | 382 | | | . 152 | 3:5 | 246 | | 298 | 218 | 241 ' | 363 | | HEAT TO | :35 ; | 234 | 134 | 254 | 235 | 136 | 328 | PP. | | LUSE CIL | .25 | .33 - | 2.22 | 25: | 272 : | . | 215 | ಯಾ | | (BTJ/HR x :000) | : 150 j | .13 | 200 | 227 | 248 | 259 | 290 € | 312 | | • | 75 | ·53 | • 78 | 303 | <u></u> 4 | 245 | 256 ; | 297 . | | <u> </u> | <u> 50 '</u> | *33 | •53 | | 200 1 | <u>~~</u> | 342 | | | I | ाड । | 53 | 38 | - 23 | 37 | 2:2 | 3 07 , | ÷C3 | | | .52 | cz ; |
58 | ാ | **7 | .21 | <u> </u> | 291 | | HEAT TO | :38 | 21 | 41 | 51 : | 38 | ::5 | 171 | <u>~</u> 5 | | INTERCOCLER : | - <u>25</u> | • • • • | as , | ÷2 | 33 | . 5 | ·== | 153 | | (87U/HR x 1000) [| :30 | -2 | <u> </u> | - <u>=</u> | <u> 19</u> | 41 | 34 | 36 | | ! | 75 | − j | -3 | -: , | 3 : | 3 | =3 | 33 | | · · · · · · · · · · · · · · · · · · · | 50 | | | i | -3 | · · · | <u> </u> | - 9 | ²30e:ਸ2 # HEAT REJECTION AND OPERATING DATA IZOSANT HEADON RETAW RELOCORETMI 7 '061 OITAR JEVINIA DIRTEMONICIOTE | <u> </u> | , | | | F | NGINE SPEE | 50 304 | | | |-----------------|---------------|-------------------|-------------------|----------------|------------|--------|--------|-------------| | }
; | i awe | ., —— | | , | | - APM | | | | i | (psi | 600 | | | 900 | | 1100 | 1200 | | | j :72 | | 568 | 588 | ; 500 | 511 | 546 | ; 681 | | | :52 | -85 | j 509 | 529 | 562 | 584 | 522 | 660 | | HEAT TO | :38 | <u>.</u> 446 | 479 | 511 | 538 | 566 | 505 | 645 | | RADIATION | :25 | 422 | 453 | 487 | 517 | 546 | . 888 | . ಮ | | (BTJ/HR x 1000) | :00 | 385 | 417 | -48 | 479 | 509 | 555 | 501 | | ! | 75 | 359 | 386 | 413 | 441 | 463 | 517 | 566 | | | 50 | 330 | | 375 | i 40a | 125 | 477 | 521 | | | 1 :72 | , 1570 | 1940 | 22:0 | 2545 | i 2980 | : 3290 | ; 3705 | | | :52 | :393 | 1660 | 1925 | 2240 | 2550 | 2945 | 3335 | | TOTAL ENERGY | :38 | : 242 | 1496 | 1750 | 2040 | 2235 | 2710 | 3085 | | IN EXHAUST | :25 | :::2 | :347 | :585 | :850 | 1 2:20 | 2475 | 2825 | | (BTU/HR x 1000) | 100 | 30C | 1093 | : 286 | 1505 | :725 | 2030 | 2225 | | | 75 | 752 | 347 | ; 293 | :62 | : :23: | :580 | :825 | | | 50 | <u> </u> | 397 | - 599 | | 930 | | 292 | | | 1 :72 | : 354 | ; :070 | :086 | :091 | . 1096 | 1 1121 | :145 | | | :52 | ¦ 980 | 1007 | :035 | 1053 | :072 | 104 | :135 | | EXHAUST TEMP. | :38 | 3-1 2 | | 1006 | :030 | :055 | 1090 | 1125 | | AFTER TURBINE | :25 | 911 | ; 94 6 | 980 | 1009 | i :ca7 | :075 | :113 | | 50° F | 100 | : 36 7 | } ∋c3 | 338 | 969 | i .ccc | :042 | 1085 | | | i 73 | . es | 362 | 395 | 325 | 356 | ·.cci | 949 | | | 50 | | <u> </u> | 345 | 375 | ÷ | 955 | ·ccs | | | | 1240 | : 460 | :575 | , :SC5 | 2140 | - 225 | 3550 j | | INDUCTION AIR | :52 | | 1300 | :495 | 1700 | 1910 | 2:35 | : 2365 | | FLOW | 138 | .020 | 195 | :375 | :565 | 1750 | 1960 | 2170 | | (SCFM) | :25 | 353 | :095 | :255 | :425 | :600 | 1790 | 1980 | | (SOFM) | . :∞i | 7.70 | 905 | :ೞಽ | 1175 | :315 | 1475 | :500 | | | 50 | 515 | 715 | 3220 | 320 | .040 | **85 | :290 | | | · 72 | 455 | 535 | * 310 | 590 | | 360 | ∋50 | | | . 152 | . :665 | 3635 : | T\$20 | 3685 . | 3745 | 10910 | :2070 | | EXHAUST GAS | : :38 - | 5050 | 5925 | 5300 | -745 | 3650 . | 9730 | 10765 | | FLOW | | 4650 | 5450 | 5 255 , | 7120 . | T385 | 5935 | £890 j | | (Lasihri | 1 <u>75</u> : | 1245 | 1980 | 1715 | 5500 | 7295 | 3150 | 3020 | | 1 | 75 | 3515 | 4120 | ±729 ; | 5360 ; | 5005 | 3720 | 7435 | | | 50 ° | 2735 | 3275 | 3750 | 4245 | 4745 | £310 | 5880 | | | 34 | 2090 | 244C | 2795 ! | 315C : | 35°C | 1930 | 4350 | 25: 4 Exhaustidow, ACFM a Exh. Temp. 15 - 4601 5. Feterence C-273-u. Waukesha @ Pace 2 ct 2 All data are cased on standard conditions of "SO kPa (29.54 inches Hg.; parometric pressure, 25" 0.777" in amount and induction air temperature, 20% relative numicity in kPai0,3 inches Hg. water vapor pressure) and 82" 0.1130" in engine acket water outlet temperature. ² Data are average values at the standard concritors and will vary for individual engines and with operating and ambient conditions. An adequate reserve should be used for cooling system or near recovery calculations. See also Cooling System Guidelines \$6605-4. ^{3.} For neat relection citanges due to engine lacker water outlet temperature different from standard (Note 11, refer to 5-7615-2). Звисистения, штоса в 1 1, зитивитано. # EMISSION LEVELS ∨нр- | | 1 | : | GRAM: | בעיפה/פ | | | ISEEVED
DEV | MASS | !
VCLUME | :
; EXCESS
: AIF | |----------------|---------------------------------------|------|-------|---------|------------|------|----------------|---------|----------------|------------------------| | VCC= | CARBURETOR
SETTING | NCX. | sa | NWHC | <u>਼=ਦ</u> | ge ' | . GZ | 7E3- | △F≡ | EAT | | -
3.GSi | Lowest Manifold (Sest Power) | 7.9 | 29.0 | a.30 | 2.0 | 1.15 | 0.30 | 15.5:1 | 9.2:1 | a. s7 | | 3.681 | Equal NCx & | 10.0 | 0.0: | 0.30 | 20 | c.45 | a.30 | :5.3:1 | 3.5:1 | 0.99 | | g. gs i | Caravtic Conv.
Incit (3-
way**) | :1.3 | 8.C | 0.25 | 1.7 | C.38 | 0.30 | 15.95:1 | 9. 6 :1 | 0.39 | | g.gsi | Normal (Best
Economy) | 18.0 | 1.9 | 3.20 | 1.0 | c.sz | 1.35 | 17.0:1 | 10.2:1 | 1.06 | | 3L] | Normal | 1.5 | 2.55 | :.a | 5.5 | 92.5 | 9.3 | 29.0:1 | 16.8:1 | 1,74 | ATGL | | . CAREURETOR | 1
! | 3EAMS | םע.םען | | :
2.08 | SEEVET | MASS | VOLUME | EXCEST | |--------|--------------|------------|-------|------------|-----------------|------------------|-----------|--------|------------|--------| | ACCE | SETING | VCX. | SS | MHC | <u> </u> | 33 | <u>92</u> | 75=- | 1 <u>1</u> | =4 | | ATZ5GL | Normal | و.: | 2.25 | ុំ វ.១ | O_B | 0.06 | 9.3 | 28.0:1 | 16.87 | 1.74 | | ATZ7GL | Normal | :
• :.5 | 1.70 | :
 CL5 | 5.0 | 3.2 6 | 3.8 | 29.0:1 | 16.3:1 | 1.74 | | 4727GL | Ultra Lean | 1.5 | 23 | C.5 | 6 .0 | .305 | 11.4 | 32_0:1 | 19_2:1 | ; 2.50 | # COOPER ENERGY SERVICES March 18, 1982 Texas Eastern Trammission Corporation Post Office Box 2511 Houston, Texas 77001 Attention: Mr. Willard T. Young Manager Environmental Protection Reference: Specification #1601 for Gas Engine Driven Reciprocating Gas Compressor for Transmestern Pipeline Company #### Gentlemen: I am pleased to submit the following emission and fuel rate data for our CES Superior engines as requested by your Mr. A. Gill. This data is based upon engines operated at 100% speed and 100% torque. | Mode? | Fuel
BTW/HP-HR | NOX
GN/HP-HR | CD
GM/HP-HR | NAME OF THE COMPANY O | |--------|-------------------|-----------------|----------------|--| | 86TLA | 7400 | 5.0 | 3.0 | .75 | | 16SGTA | 7150 | 5.0 | 2.0 | .60 | The emissions values are guaranteed with no tolerances. Fuel rates are subject to a 1% tolerance on factory tests and 3% tolerance on field tests. The data is also based upon constant supply of 120°F maximum cooling water to the combustion air aftercoolers. We trust this provides all required information, however if additional data is needed, please contact Mr. C. W. Woltz of this office. Yours very truly A. J. Campbell Regional Sales Manager AJC:SW cc: C. W. Koltz ## GRI-HAPCalc® 3.0 Engines Report Facility ID: RB3 Notes: Operation Type: : COMPRESSOR STATION **Facility Name:** **RED BLUFF #3** **User Name:** Units of Measure: U.S. STANDARD Note: Emissions less than 5.00E-09 tons (or tonnes) per year are considered insignificant and are treated as zero. These emissions are indicated on the report with a "0". Emissions between 5.00E-09 and 5.00E-05 tons (or tonnes) per year are represented on the report with "0.0000". #### **Engine Unit** Unit Name: C-865 Hours of Operation: 8,760 Yearly Rate Power: 1,265 hp Fuel Type: NATURAL GAS Engine Type: 4-Stroke, Lean Burn Emission Factor Set: **GRI LITERATURE DATA** Additional EF Set: -NONE- ## **Calculated Emissions** (ton/yr) | Chemical Name | Emissions | Emission Factor | Emission Factor Set | |----------------|-----------|---------------------|---------------------| | <u>HAPs</u> | | | | | Formaldehyde | 1.2338 | 0.10110000 g/bhp-hr | GRI Literature | | Acetaldehyde | 0.2063 | 0.01690000 g/bhp-hr | GRI Literature | | Acrolein | 0.0903 | 0.00740000 g/bhp-hr | GRI Literature | | Benzene | 0.0525 | 0.00430000 g/bhp-hr | GRI Literature | | Toluene | 0.3283 | 0.02690000 g/bhp-hr | GRI Literature | | Xylenes(m,p,o) | 0.0110 |
0.00090000 g/bhp-hr | GRI Literature | | Total | 1.9222 | | | Unit Name: C-867 Hours of Operation: 8,760 Yearly Rate Power: 1,195 hp Fuel Type: NATURAL GAS Engine Type: 4-Stroke, Rich Burn Emission Factor Set: GRI LITERATURE DATA Additional EF Set: -NONE- ## Calculated Emissions (ton/yr) | Chemical Name | _Emissions_ | Emission Factor | Emission Factor Set | |---------------|-------------|---------------------|---------------------| | <u>HAPs</u> | | | | | Formaldehyde | 0.7182 | 0.06230000 g/bhp-hr | GRI Literature | | Acetaldehyde | 0.0450 | 0.00390000 g/bhp-hr | GRI Literature | | | | | | 09/26/2010 10:21:56 GRI-HAPCalc 3.0 Page 1 of 3 | Acrolein | 0.0392 | 0.00340000 g/bhp-hr | GRI Literature | |----------------|--------|---------------------|----------------| | Benzene | 0.0530 | 0.00460000 g/bhp-hr | GRI Literature | | Toluene | 0.0184 | 0.00160000 g/bhp-hr | GRI Literature | | Xylenes(m,p,o) | 0.0161 | 0.00140000 g/bhp-hr | GRI Literature | | Total | 0.8899 | | | Unit Name: C-868 Hours of Operation: 8,760 Yearly Rate Power: 1,195 hp Fuel Type: NATURAL GAS Engine Type: 4-Stroke, Rich Burn Emission Factor Set: **GRI LITERATURE DATA** Additional EF Set: -NONE- ## Calculated Emissions (ton/yr) | Chemical Name | Emissions | Emission Factor | Emission Factor Set | |----------------------|-----------|---------------------|---------------------| | <u>HAPs</u> | | | | | Formaldehyde | 0.7182 | 0.06230000 g/bhp-hr | GRI Literature | | Acetaldehyde | 0.0450 | 0.00390000 g/bhp-hr | GRI Literature | | Acrolein | 0.0392 | 0.00340000 g/bhp-hr | GRI Literature | | Benzene | 0.0530 | 0.00460000 g/bhp-hr | GRI Literature | | Toluene | 0.0184 | 0.00160000 g/bhp-hr | GRI Literature | | Xylenes(m,p,o) | 0.0161 | 0.00140000 g/bhp-hr | GRI Literature | | Total | 0.8899 | | | Unit Name: C-878 Hours of Operation: 8,760 Yearly Rate Power: 1,073 hp Fuel Type: NATURAL GAS Engine Type: 4-Stroke, Lean Burn **Emission Factor Set:** GRI LITERATURE DATA Additional EF Set: -NONE- ## Calculated Emissions (ton/yr) | Chemical Name | Emissions | Emission Factor | Emission Factor Set | |----------------------|-----------|---------------------|---------------------| | <u>HAPs</u> | | | | | Formaldehyde | 1.0466 | 0.10110000 g/bhp-hr | GRI Literature | | Acetaldehyde | 0.1749 | 0.01690000 g/bhp-hr | GRI Literature | | Acrolein | 0.0766 | 0.00740000 g/bhp-hr | GRI Literature | | Benzene | 0.0445 | 0.00430000 g/bhp-hr | GRI Literature | | Toluene | 0.2785 | 0.02690000 g/bhp-hr | GRI Literature | | Xylenes(m,p,o) | 0.0093 | 0.00090000 g/bhp-hr | GRI Literature | | Total | 1.6304 | | | 09/26/2010 10:21:57 GRI-HAPCalc 3.0 Page 2 of 3 Unit Name: C-880 Hours of Operation: 8,760 Yearly Rate Power: 1,265 hp Fuel Type: **NATURAL GAS** Engine Type: 4-Stroke, Lean Burn Emission Factor Set: GRI LITERATURE DATA Additional EF Set: -NONE- ## Calculated Emissions (ton/yr) | Chemical Name | Emissions | Emission Factor | Emission Factor Set | |----------------|-----------|---------------------|---------------------| | <u>HAPs</u> | | | | | Formaldehyde | 1.2338 | 0.10110000 g/bhp-hr | GRI Literature | | Acetaldehyde | 0.2063 | 0.01690000 g/bhp-hr | GRI Literature | | Acrolein | 0.0903 | 0.00740000 g/bhp-hr | GRI Literature | | Benzene | 0.0525 | 0.00430000 g/bhp-hr | GRI Literature | | Toluene | 0.3283 | 0.02690000 g/bhp-hr | GRI Literature | | Xylenes(m,p,o) | 0.0110 | 0.00090000 g/bhp-hr | GRI Literature | | Total | 1.9222 | | | 09/26/2010 10:21:57 GRI-HAPCalc 3.0 Page 3 of 3 # Map(s) **<u>A map</u>** such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following: | The UTM or Longitudinal coordinate system on both axes | An indicator showing which direction is north | |--|--| | A minimum radius around the plant of 0.8km (0.5 miles) | Access and haul roads | | Topographic features of the area | Facility property boundaries | | The name of the map | The area which will be restricted to public access | | A graphical scale | | A map is attached. Map Name: COYOTE DRAW (NM) Print Date: 02/25/20 Map Center: 13 0556750 E 3731381 N Horizontal Datum: WGS84 ## **Proof of Public Notice** (for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice") ☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit. Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application. New Permit and Significant Permit Revision public notices must include all items in this list. **Technical Revision** public notices require only items 1, 5, 9, and 10. Per the Guidelines for Public Notification document mentioned above, include: | 1. | A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC) | |-----|--| | 2. | A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g. post office, library, grocery, etc.) | | 3. | A copy of the property tax record (20.2.72.203.B NMAC). | | 4. | A sample of the letters sent to the owners of record. | | 5. | A sample of the letters sent to counties, municipalities, and Indian tribes. | | 6. | A sample of the public notice posted and a verification of the local postings. | | 7. | A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group. | | 8. | A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal. | | 9. | A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish. | | 10. | A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish. | | 11. | A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record. | N/A – Public Notice is not required for applications being submitted under 20.2.70 NMAC. ## Written Description of the Routine Operations of the Facility A written description of the routine operations of the facility. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources. The Red Bluff No. 3 natural gas compressor station is part of a localized gas gathering system that gathers sweet field gas from multiple wells in the area. The SIC code for the facility is 4922. The facility is located in Section 10, Township 7 South, Range 25 East in Chaves County. Equipment currently authorized at the site includes the following: - Two (2) Caterpillar G3516 compressor engines (Units C-865 and C-880); - Two (2) Waukesha L7042GSI compressor engines (Units C-867 and C-868); - One (1) Superior 8GTLA compressor engine (Unit C-878); - One (1) rinse compressor engine (Unit C-320); - Two (2) Capstone C65 microturbines (Units CAP-1 and CAP-2); - One glycol dehydration contactor (unit Dehy-1); and - Two (2) condensate storage tanks (Units TK-1 and TK-2); Additional emissions at the facility result from startup, shutdown, maintenance, and malfunction (Unit SSM/M) and facility-wide fugitive component emissions (FUG). The following insignificant activities and equipment are located at Red Bluff No. 3: - One (1) glycol dehydration unit reboiler (Unit Rebl-1); - Five (5) nitrogen rejection units (Unit NRU-1); - One (1) helium recovery unit (Unit HRU). - Five (5) miscellaneous storage tanks for lube oil, glycol, etc. (Units T-1 through T-5); - Loadout emissions from truck loadout of condensate and NGL (Units Load and NGL Load); and - Unpaved haul road emissions (Unit Haul). Each compressor engine at the site is authorized to operate continuously at the design maximum capacity horsepower listed in the application. These engines will provide a maximum production capacity that is dependent upon the suction and discharge pressures at the facility, the number of wells connected to the facility, and the gas deliverability that each well provides the site. The Waukesha engines and the Caterpillar CG137-12 engine are equipped with catalytic converters. All of the compressor engines are turbocharged and are not derated per current NMED policy. The facility is authorized to operate continuously
(8,760 hr/yr) at design maximum capacity processing rates. IACX will minimize startup and shutdown activities at the facility in accordance with good operating principles and business objectives. This practice will serve to minimize total annual excess emissions from the facility due to startup, shutdown, and maintenance activities. # **Section 11** ## **Source Determination** Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, Single Source Determination Guidance, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website. Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED. A. Identify the emission sources evaluated in this section (list and describe): See Table 2-A. B. Apply the 3 criteria for determining a single source: following facilities or emissions sources (list and describe): | <u>SIC Code</u> : Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source. | |---| | ☑ Yes □ No | | <u>Common Ownership or Control</u> : Surrounding or associated sources are under common ownership or control as this source. | | ☑ Yes □ No | | <u>Contiguous</u> or <u>Adjacent</u> : Surrounding or associated sources are contiguous or adjacent with this source. | | ☑ Yes □ No | | Make a determination: The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. | | | The source, as described in this application, **does not** constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the ## **Section 12.A** ## **PSD Applicability Determination for All Sources** (Submitting under 20.2.72, 20.2.74 NMAC) A PSD applicability determination for all sources. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the EPA New Source Review Workshop Manual to determine if the revision is subject to PSD review. | Α. | This | fa | cilit | v is: | |-------------|--------|----|-------|-------| | / 1. | 1 1113 | La | um | ۷ 15. | - a minor PSD source before and after this modification (if so, delete C and D below). a major PSD source before this modification. This modification will make this a PSD minor source. an existing PSD Major Source that has never had a major modification requiring a BACT analysis. an existing PSD Major Source that has had a major modification requiring a BACT analysis a new PSD Major Source after this modification. - B. This facility [is or is not] one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are [significant or not significant]. [Discuss why.] The "project" emissions listed below [do or do not] only result from changes described in this permit application, thus no emissions from other [revisions or modifications, past or future] to this facility. Also, specifically discuss whether this project results in "de-bottlenecking", or other associated emissions resulting in higher emissions. The project emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]: - a. NOx: XX.X TPY - b. CO: XX.X TPY - c. VOC: XX.X TPY - d. SOx: XX.X TPY - e. PM: XX.X TPY - f. PM10: XX.X TPY g. PM2.5: XX.X TPY - h. Fluorides: XX.X TPY - i. Lead: XX.X TPY - j. Sulfur compounds (listed in Table 2): XX.X TPY - k. GHG: XX.X TPY - C. Netting [is required, and analysis is attached to this document.] OR [is not required (project is not significant)] OR [Applicant is submitting a PSD Major Modification and chooses not to net.] - D. BACT is [not required for this modification, as this application is a minor modification.] OR [required, as this application is a major modification. List pollutants subject to BACT review and provide a full top down BACT determination.] If this is an existing PSD major source, or any facility with emissions greater than 250 TPY (or 100 TPY for 20.2.74.501 Table 1 – PSD Source Categories), determine whether any permit modifications are related, or could be considered a single project with this action, and provide an explanation for your determination whether a PSD modification is triggered. N/A – This application is being submitted under 20.2.70 NMAC. A PSD applicability determination was performed as part of the application for NSR Permits 0412-M4. ## **Determination of State & Federal Air Quality Regulations** This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants. Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations. #### **Required Information for Specific Equipment:** For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement. ### Required Information for Regulations that Apply to the Entire Facility: See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC). #### Regulatory Citations for Regulations That Do Not, but Could Apply: If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher. #### **Regulatory Citations for Emission Standards:** For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1) #### **Federally Enforceable Conditions:** All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable
means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations. INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT. | EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/ | | | | | | |---|--|--|--|--|--| | | | | | | | Form-Section 13 last revised: 5/29/2019 Section 13, Page 1 Saved Date: 6/16/2021 ## **Table for STATE REGULATIONS:** | Table for STATE REGULATIONS: | | | | | | |---------------------------------------|--|-----------------------------------|---|---|--| | STATE
REGU-
LATIONS
CITATION | Title | Applies?
Enter
Yes or
No | Unit(s)
or
Facility | JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.) | | | 20.2.1 NMAC | General Provisions | Yes | Facility | Red Bluff No. 3 operates under NSR Permit 0412-M4 and therefore this regulation applies. | | | 20.2.3 NMAC | Ambient Air
Quality Standards
NMAAQS | Yes | Facility | 20.2.3 NMAC is a SIP approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. The facility meets maximum allowable concentrations of the TSP, SO ₂ , H ₂ S, NO _x , and CO under this regulation. | | | 20.2.7 NMAC | Excess Emissions | Yes | Facility | This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. The owner or operator will operate the source at the facility having an excess emission, to the extent practicable, including associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions. The facility will also notify the NMED of any excess emission per 20.2.7.110 NMAC. | | | 20.2.23 | English Door | | | This regulation does not apply as this application is submitted under 20.2.70 NMAC and therefore exempt of this requirement. | | | NMAC | Fugitive Dust
Control | No | Facility | Sources exempt from 20.2.23 NMAC are activities and facilities subject to a permit issued pursuant to the NM Air Quality Control Act, the Mining Act, or the Surface Mining Act (20.2.23.108.B NMAC. | | | 20.2.33
NMAC | Gas Burning
Equipment -
Nitrogen Dioxide | No | N/A | This facility does not have existing gas burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit. The facility is not subject to this regulation and does not have emission sources that meet the applicability requirements under 20.2.33.108 NMAC. | | | 20.2.34
NMAC | Oil Burning
Equipment: NO ₂ | No | N/A | This facility does not have oil burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit. The facility is not subject to this regulation and does not have emission sources that meet the applicability requirements under 20.2.34.108 NMAC. | | | 20.2.35
NMAC | Natural Gas
Processing Plant –
Sulfur | No | N/A | This facility is not a natural gas processing plant, as defined in the regulation [20.2.35.7 NMAC]. This regulation is to establish sulfur emissions standards for natural gas processing plants [20.2.35.6 NMAC]. As this facility is not defined as a natural gas processing plant under this regulation, the facility is not subject to this regulation. | | | 20.2.37 and
20.2.36
NMAC | Petroleum Processing Facilities and Petroleum Refineries | No | N/A | This facility not a natural gas or petroleum processing facility, as defined in the regulation [20.2.37.7 NMAC]. This regulation is to minimize emissions from petroleum or natural gas processing facilities [20.2.37.6 NMAC]. As this facility is not defined as a natural gas or petroleum processing facility, the facility is not subject to this regulation. | | | 20.2.38
NMAC | Hydrocarbon
Storage Facility | No | N/A | There are no tanks or tank batteries that meet the storage capacity and weekly throughput requirements that would trigger this requirement. The throughput for this facility is less than the 10,000 barrel per year threshold. There are also no tank batteries having a capacity greater than 50,000 barrels or new tank batteries with a capacity greater than 65,000 gallons. [20.2.38.109 NMAC][20.2.38.110 NMAC] [20.2.38.111 NMAC] [20.2.38.112 NMAC]. | | | 20.2.39
NMAC | Sulfur Recovery
Plant - Sulfur | No | N/A | This regulation establishes sulfur emission standards for sulfur recovery plants which are not part of petroleum or natural gas processing facilities. This regulation does not apply to this facility because it does not have elements of a sulfur recovery plant present. | | | 20.2.61.109
NMAC | Smoke & Visible
Emissions | Yes | C-865,
C-867,
C-868,
C-878,
C-880,
C-320,
FUG,
CAP-1,
CAP-2 | This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares unless your equipment is subject to another state regulation that limits particulate matter such as 20.2.19 NMAC (see 20.2.61.109 NMAC). This facility has engines and turbines which meet the definition of stationary combustion equipment as defined in 20.2.61.7.D and are therefore subject to this regulation. | | Form-Section 13 last revised: 5/29/2019 Section 13, Page 2 | STATE REGU- LATIONS CITATION | Title | Applies?
Enter
Yes or
No | Unit(s)
or
Facility | JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.) | | |------------------------------|---|-----------------------------------|--|---|--| | 20.2.70
NMAC | Operating Permits | Yes | Facility | Red Bluff No. 3 operates under TV P073-R3M2 and is a major source for NO _X and CO. Therefore, the facility is subject to this regulation and 20.2.71 NMAC. | | | 20.2.71
NMAC | Operating Permit
Fees | Yes | Facility | Red Bluff No. 3 is subject to 20.2.70 NMAC, therefore it is subject to 20.2.71 NMAC. | | | 20.2.72
NMAC | Construction
Permits | Yes | Facility | This regulation establishes the requirements for obtaining a construction permit. The facility is a stationary source that has potential emission rates great than 10 pounds per hour or 25 tons per year of any regulated air contaminant for which there is a National or New Mexico Air Quality Standard. The facility has a construction permit (NSR Permit) 0412-M4 to meet the requirements of this regulation. | | | 20.2.73
NMAC | NOI & Emissions
Inventory
Requirements | Yes | Facility | This regulation establishes emission inventory requirements. The facility meets the applicability requirements of 20.2.73.300 NMAC. The facility will meet all applicable reporting requirements under 20.2.73.300.B.1 NMAC. | | | 20.2.74
NMAC | Permits – Prevention of Significant Deterioration (PSD) | No | N/A | This regulation establishes requirements for obtaining a prevention of significant deterioration permit. Facility-wide emission rates are below PSD-major thresholds. This regulation does not apply. | | | 20.2.75
NMAC | Construction
Permit Fees | Yes | Facility | This regulation establishes the guidelines and requirements for construction permitting fees. This facility is subject to this regulation as 20.2.72 NMAC also applies. | | | 20.2.77
NMAC | New Source
Performance | Yes | C-320 | This regulation establishes state authority to implement NSPS for stationary sources subject to 40 CFR 60. Unit C-320 is subject to NSPS JJJJ and Subpart A. | | | 20.2.78
NMAC | Emission
Standards for
HAPS | No | N/A | This regulation establishes state authority to implement emission standards for | | | 20.2.79
NMAC | Permits –
Nonattainment
Areas | No | N/A | This regulation establishes the requirements for obtaining a nonattainment area permit. The facility is not located in a non-attainment area and therefore is not subject to this regulation. | | | 20.2.80
NMAC | Stack Heights | No | N/A | This regulation establishes requirements for the evaluation of stack heights and other dispersion techniques. This regulation does not apply as all stacks at the facility follow good engineering practice. | | | 20.2.82
NMAC | MACT Standards
for source
categories of
HAPS | Yes | C-865,
C-867,
C-868,
C-878,
C-880,
C-320,
Dehy-1 | This regulation applies to
all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63. Units C-865, C-867, C-868, C-878, C-880 are subject to MACT ZZZZ. Unit C-320 complies with MACT ZZZZ by being complying with NSPS JJJJ requirements. The dehydrator still vent/flash tank is subject to MACT HH. | | **Table for Applicable FEDERAL REGULATIONS:** | Table for Applicable FEDERAL REGULATIONS: | | | | | | | |---|---|-----------------------------------|------------------------|---|--|--| | FEDERAL REGU- LATIONS CITATION | Title | Applies?
Enter
Yes or
No | Unit(s) or
Facility | JUSTIFICATION: | | | | 40 CFR 50 | NAAQS | Yes | Facility | This regulation defines national ambient air quality standards. The facility meets all applicable national ambient air quality standards for NO _x , CO, SO ₂ , H ₂ S, PM ₁₀ , and PM _{2.5} under this regulation. | | | | NSPS 40
CFR 60,
Subpart A | General Provisions | Yes | C-320,
FUG | This regulation defines general provisions for relevant standards that have been set under this part. NSPS 40 CFR 60, Subpart A applies to Unit C-320 because the engine is subject to NSPS JJJJ requirements. Additionally, the compressor associated with C-320 and fugitives are subject to NSPS OOOOa. | | | | NSPS 40
CFR60.40a,
Subpart Da | Subpart Da, Performance Standards for Electric Utility Steam Generating Units | No | N/A | This regulation establishes standards of performance for electric utility steam generating units. This regulation does not apply because the facility does not operate any electric utility steam generating units. | | | | NSPS 40
CFR60.40b
Subpart Db | Electric Utility Steam
Generating Units | No | N/A | This regulation establishes standards of performance for industrial-commercial-institutional steam generating units. There are no steam generating units that commenced construction, modification, or reconstruction after June 19, 1984, and that have a heat input capacity greater than 100 MMBtu/hr at the facility. | | | | 40 CFR
60.40c,
Subpart Dc | Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units | No | N/A | This regulation establishes standards of performance for small industrial-commercial-institutional steam generating units. This facility does not have steam-generating units and therefore this subpart does not apply. | | | | NSPS
40 CFR 60,
Subpart Ka | Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984 | No | N/A | This regulation establishes performance standards for storage vessels for petroleum liquids for which construction, reconstruction, or modification commenced after May 18, 1978, and prior to July 23, 1984. There are no regulated tanks at the facility; therefore, this subpart does not apply. | | | | NSPS
40 CFR 60,
Subpart Kb | Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984 | No | N/A | This facility does not have storage vessels with a capacity greater than or equal to 75 cubic meters (m ³) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984. Therefore, this subpart does not apply. | | | | NSPS
40 CFR
60.330
Subpart GG | Stationary Gas
Turbines | No | N/A | This regulation establishes standards of performance for certain stationary gas turbines. The Capstone C65 microturbines have a calculated heat input of 0.84 MMBtu/hr which is less than the 10 MMBtu/hour threshold. This regulation does not apply. | | | | FEDERAL REGU- LATIONS CITATION | Title | Applies?
Enter
Yes or
No | Unit(s) or
Facility | JUSTIFICATION: | |--|--|-----------------------------------|-----------------------------------|--| | NSPS
40 CFR 60,
Subpart
KKK | Leaks of VOC from
Onshore Gas Plants | No | N/A | This regulation establishes standards of performance for equipment leaks of VOC from onshore natural gas processing plants for which construction, reconstruction, or modification commenced after January 20, 1984, and on or before august 23, 2011. The facility is not a natural gas processing plant as defined in this regulation [40 CFR Part 60.631]. This regulation does not apply because this facility does not meet the definition of a natural gas processing plant as stated in the regulation. | | NSPS
40 CFR Part
60 Subpart
LLL | Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions | No | N/A | This regulation does not apply because this facility does not meet the definition of a natural gas processing plant as stated in the regulation. | | NSPS
40 CFR Part
60 Subpart
OOOO | Standards of
Performance for
Crude Oil and Natural
Gas Production,
Transmission, and
Distribution for which
construction,
modification or
reconstruction
commenced after
August 23, 2011 and
before September 18,
2015 | No | N/A | This regulation establishes standards of performance for crude oil and natural gas production, transmission and distribution. The facility does not have any affected units that have been modified or reconstructed on or after August 23, 2011 and before September 18, 2015. [40 CFR 60.5360 (Subpart OOOO)] | | NSPS
40 CFR Part
60 Subpart
OOOOa | Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015 | Yes | C-320
(compresso
r),
FUG | This regulation establishes standards of performance for crude oil and natural gas production, transmission and distribution. The reciprocating compressor associated with unit C-320 was constructed after September 18, 2015 and is therefore subject to this subpart. The collection of fugitive emissions at the compressor station are additionally subject to this subpart. [40 CFR 60.5365a (Subpart OOOOa)] | | NSPS
40 CFR Part
60 Subpart
JJJJ | Standards of Performance for Stationary Spark Ignition Internal Combustion Engines | Yes | C-320 | This regulation establishes standards of performance for stationary spark ignition combustion engines. Unit C-320 commenced construction after June 12, 2006; therefore, this regulation applies. | | NESHAP
40 CFR 61
Subpart A | General Provisions | No | N/A | NESHAP 40 CFR 61 does not apply to the facility because the facility does not emit or have the triggering substances on site and/or the facility is not involved in the triggering activity. The facility is not subject to this regulation. None of the subparts of Part 61 apply to the facility. | | NESHAP
40 CFR 61
Subpart E | National Emission
Standards for
Mercury | No | N/A | This regulation establishes a national emission standard for mercury. The facility does not have stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge [40 CFR Part 61.50]. The facility is not subject to this regulation. | | NESHAP
40 CFR 61
Subpart V | National Emission
Standards for
Equipment Leaks
(Fugitive Emission
Sources) | No | N/A | This regulation establishes national emission standards for equipment leaks (fugitive emission sources). The facility does not have equipment that operates in volatile hazardous air pollutant (VHAP) service [40 CFR Part 61.240]. The regulated activities subject to this regulation do not take place at this facility. The facility is not subject to this regulation. | | FEDERAL REGU- LATIONS CITATION | Title | Applies?
Enter
Yes or
No | Unit(s) or
Facility | JUSTIFICATION: | |--|--|-----------------------------------|--
--| | MACT
40 CFR 63,
Subpart A | General Provisions | Yes | C-865,
C-867,
C-868,
C-878,
C-880,
C-320,
Dehy-1 | This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63. Units C-865, C-867, C-868, C-878, C-880 are subject to MACT ZZZZ. Unit C-320 is in compliance with MACT ZZZZ by being subject to NSPS JJJJ requirements. The dehydrator still vent/flash tank is subject to MACT HH. | | MACT
40 CFR
63.760
Subpart HH | Oil and Natural Gas
Production Facilities | Yes | Dehy-1 | This subpart applies to owners and operators of emissions points including glycol dehydration units, and storage vessels with the potential for flash emissions This facility is subject to the requirements of 40 CFR 63 Subpart HH, which includes requirements applicable to area sources with TEG Dehydrators. The site is not a major source of hazardous air pollutants (HAPs) but an area source of HAPs and therefore subject to this subpart. | | MACT
40 CFR 63
Subpart
ZZZZ | National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT) | Yes | C-865,
C-867,
C-868,
C-878,
C-880,
C-320 | This subpart establishes national emission limitations and operating limitations for hazardous air pollutants (HAP) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. There are six internal combustion engines at this facility; therefore, this subpart applies. | | 40 CFR 64 | Compliance
Assurance
Monitoring | Yes | C-867,
C-868 | Red Bluff No. 3 is a major source for NO _x and CO and therefore this regulation applies. Both units are installed with a catalytic converter. | | 40 CFR 68 | Chemical Accident
Prevention | No | N/A | The facility is not an affected facility because it does not have quantities of materials regulated by 40 CFR Part 68 that are in excess of the triggering threshold. | | Title IV –
Acid Rain
40 CFR 72 | Acid Rain | No | N/A | This part establishes the acid rain program. This part does not apply because the facility is not covered by this regulation [40 CFR Part 72.6]. | | Title IV –
Acid Rain
40 CFR 73 | Sulfur Dioxide
Allowance Emissions | No | N/A | This part establishes the acid rain program. This part does not apply because the facility is not covered by this regulation. | | Title IV-Acid
Rain 40 CFR
75 | Continuous
Emissions
Monitoring | No | N/A | This part establishes the acid rain program. This part does not apply because the facility is not covered by this regulation. | | Title IV –
Acid Rain
40 CFR 76 | Acid Rain Nitrogen Oxides Emission Reduction Program | No | N/A | This part establishes the acid rain program. This part does not apply because the facility is not covered by this regulation. | | Title VI –
40 CFR 82 | Protection of Stratospheric Ozone | No | N/A | The facility does not "service", "maintain" or "repair" class I or class II appliances nor "disposes" of the appliances. Note: Disposal definition in 82.152: Disposal means the process leading to and including: (1) The discharge, deposit, dumping or placing of any discarded appliance into or on any land or water; (2) The disassembly of any appliance for discharge, deposit, dumping or placing of its discarded component parts into or on any land or water; or (3) The disassembly of any appliance for reuse of its component parts. "Major maintenance, service, or repair means" any maintenance, service, or repair that involves the removal of any or all of the following appliance components: compressor, condenser, evaporator, or auxiliary heat exchange coil; or any maintenance, service, or repair that involves uncovering an opening of more than four (4) square inches of "flow area" for more than 15 minutes. | ## **Operational Plan to Mitigate Emissions** (Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC) possible. These procedures are designed to proactively address the potential for malfunction to the greatest extent possible. These procedures dictate a sequence of operations that are designed to minimize emissions from the facility during events that result in shutdown and subsequent startup. Equipment located at this facility is equipped with various safety devices and features that aid in the prevention of excess emissions in the event of an operational emergency. If an operational emergency does occur and excess emissions occur IACX will submit the required Excess Emissions Report per 20.2.7 NMAC if any emissions occur beyond the requested total SSM emission limit. Corrective action to eliminate the excess emissions and prevent recurrence in the future will be undertaken as quickly as safety allows. ## **Alternative Operating Scenarios** (Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC) Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario. Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested. In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc. N/A – There are no alternative operating scenarios for this facility. ## **Air Dispersion Modeling** - 1) Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation. - 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions modeling requirements. - 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC. | What is the purpose of this application? | Enter an X for each purpose that applies | |--|--| | New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above. | | | New Minor
Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC). | | | See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions. | | | Reporting existing pollutants that were not previously reported. | | | Reporting existing pollutants where the ambient impact is being addressed for the first time. | | | Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 | X | | above. | | | Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC) | | | Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit | | | replacements. | | | Other: i.e. SSM modeling. See #2 above. | | | This application does not require modeling since this is a No Permit Required (NPR) application. | | | This application does not require modeling since this is a Notice of Intent (NOI) application | | | (20.2.73 NMAC). | | | This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), | | | 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling | | | Guidelines. | | #### Check each box that applies: | See attached, approve | d modeling waiver | for all pollutants | from the facility. | |-----------------------|-------------------|--------------------|------------------------| | See attached, approve | d modeling waiver | for some pollutar | nts from the facility. | - ☐ Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility. - ☐ Attached in UA4 is a **modeling report for some** pollutants from the facility. - ☑ No modeling is required. This application is submitted pursuant to 20.2.70 NMAC. Air dispersion modeling for this facility was last submitted with the revision application of NSR permit No. 0412-M3R10. # **Compliance Test History** (Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC) To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example. **Compliance Test History Table** | Unit No. | Test Description | Test Date | |----------|--|-------------| | | | 5/3/2021, | | | | 12/15/2020, | | | | 8/11/2020, | | | | 12/16/2019, | | C-867 | Tested in accordance with EPA test methods for NOx and CO as | 10/8/2019, | | C-007 | required by NSR permit 0412-M4. | 5/28/2019, | | | | 2/4/2019, | | | | 8/14/2018, | | | | 5/17/2018, | | | | 3/21/2018 | | | Tested in accordance with EPA test methods for NOx and CO as required by NSR permit 0412-M4. | 5/3/2021, | | | | 12/9/2020, | | | | 8/11/2020, | | C-868 | | 10/10/2019, | | | | 5/28/2019, | | | | 6/22/2018, | | | | 3/21/2018 | | C-880 | Tested in accordance with EPA test methods for NOx and CO as | 5/19/2020, | | C-880 | required by NSR permit 0412-M4. | 2/5/2019 | | C-865 | Tested in accordance with EPA test methods for NOx and CO as | 2/4/2020 | | C-803 | required by NSR permit 0412-M4. | 10/24/2018 | | C-320 | Tested in accordance with EPA test methods for NOx and CO as | 5/3/2021 | | C-320 | required by NSR permit 0412-M4. | JI JI 2021 | | C-878 | Tested in accordance with EPA test methods for NOx and CO as | 10/25/2018 | | C-676 | required by NSR permit 0412-M4. | 10/23/2010 | ## **Requirements for Title V Program** #### Who Must Use this Attachment: - * Any major source as defined in 20.2.70 NMAC. - * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit. - * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously. - * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment. #### **19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM)** (20.2.70.300.D.10.e NMAC) Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act. IACX's units C-867 and C-868 are subject to this requirement and are monitored to remain in compliance according to the outlined measurement procedures of this requirement. A CAM plan for these units is attached in this section. #### **Monitoring Protocols** 40 CFR 64.2 states that the requirements of this part shall apply to an emissions unit at a major source if the unit satisfies all of the following criteria: - 1)The unit is subject to an emission limitation or standard for the applicable regulated air pollutant; - 2)The unit uses a control device to achieve compliance with any such emission limitation or standard; and - 3)The unit has potential pre-control device emissions of the applicable regulated air pollutant that are equal to or greater than 100 percent of the amount, in tons per year, required for a source to be classified as a major source. The Waukesha L7042GSI compressor engines are subject to the CAM requirement. #### Compliance Assurance Monitoring Plan for the Waukesha L7042GSI compressor engines: Both Waukesha L7042GSI compressor engines are equipped with Johnson-Matthey QXC60-12 catalytic converters and Continental Controls ECV 5C AFR controllers. The two units are identical with dual exhaust manifolds that merge prior to the catalyst housing. Unit 868 is identical to Unit 867. The following approach will be applicable to both units. #### Justification Based on manufacturer data, operation of the catalytic converters within the temperature and oxygen ranges outlined below provides a reasonable assurance of compliance and hence complies with CAM requirements. Form-Section 19 last revised: 8/15/2011 Section 19, Page 1 Saved Date: 6/16/2021 | Catalyst Performance Indicator [64.4(a)(1)] | Exhaust temperature and exhaust O2 content | |---|---| | Measurement Approach | Exhaust temperature is measured using an in-line | | | thermocouple. Exhaust O2 is measured with an O2 sensor that | | | translates the O2 reading into a volt reading. | | Indicator Range [64.4(a)(2)] | Acceptable temperature range is 550 °F to 1300 °F. This | | | range has been selected based on the catalyst manufacturer | | | recommendation. An acceptable O2 reading is 0% to 0.75% | | | O2, also based on catalyst manufacturer recommendations. | | | This translates into a volt range of 0.5 to 1.0. Excursions out | | | of this range will alarm as part of the SCADA system. | | Data Representativness [64.3(b)(1)] | Temperature is measured at the inlet of the catalyst housing | | | by a thermocouple. The minimum accuracy is ± 2.5 °C. | | | Oxygen is measured in each exhaust manifold prior to the | | | turbo and prior to the catalyst housing by an O2 sensor. | | Verification of Operational Status [64.3(b)(2)] | Quarterly emissions tests are performed on both units | | | following CTM-34. Agave will also maintain records of O2 | | | sensor and catalyst replacement. | | QA/QC Practices and Criteria [64.3(b)(3)] | The thermocouple is not calibrated. However, the transmitter | | | is calibrated annually and records will be kept of calibration. | | | The oxygen sensors are replaced on a regular basis and so | | | calibration of the O2 sensors are not necessary. Calibration of | | | the AFR is performed as needed i.e. replacement of the fuel | | | valve. | | Monitoring Frequency [64.3(b)(4)] | The SCADA system will record the temperature and O2 volt | | | readings a minimum of four times per day. | | Data Collection Procedures [64.3(b)(4)] | Temperature and O2 voltage readings are electronically | | | recorded a minimum of four times per day. | | Averaging Period [64.3(b)(4)] | None, not to exceed minimum and maximum values in the | | | range specified. | #### **19.2 - Compliance Status** (20.2.70.300.D.10.a & 10.b NMAC) Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for
existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance. Based on information and belief formed after reasonable inquiry, IACX believes that the Red Bluff No. 3 Compressor Station is in compliance with each applicable requirement identified in Section 13. In the event that IACX discovers new information affecting the compliance status of the facility, IACX will make appropriate notifications and/or take corrective actions. #### **19.3 - Continued Compliance** (20.2.70.300.D.10.c NMAC) Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement. Based on information and belief formed after reasonable inquiry, IACX states that the Red Bluff No. 3 Compressor Station will continue to be operated in compliance with each applicable requirement identified in Section 13. Form-Section 19 last revised: 8/15/2011 Section 19, Page 2 | consiste | ion, IACX will meet new applicable requirements that become effective during the permit term in a timely manner or ent with such schedule as expressly required by the applicable requirement. In the event that IACX discovers new tion affecting the compliance status of the facility, IACX will make appropriate notifications and/or take corrective | |----------|---| | 19.4 - | Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC) | | | You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit. | | stateme | will submit a compliance certification for the Red Bluff #3 Compressor Station by January 30 of each year. This not will document the compliance status of the facility with respect to each applicable air quality regulation and permit on. A responsible official will sign and certify this document. | | 19.5 - | Stratospheric Ozone and Climate Protection | | | In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners). | | 1. | Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozone-depleting substances? | | 2. | Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 lbs? | | | (If the answer is yes, describe the type of equipment and how many units are at the facility.) | | 3. | Do your facility personnel maintain, service, repair, or dispose of any motor vehicle air conditioners (MVACs) or appliances ("appliance" and "MVAC" as defined at 82. 152)? ☐ Yes ☑ No | | 4. | Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through G.) | | N/A - 1 | No air conditioners or refrigeration exists at this facility. | | _ | | #### 19.6 - Compliance Plan and Schedule Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below: - A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC) A parrative description of your facility's compliance status with respect - A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department. - **B.** Compliance plan: (20.2.70.300.D.11.B NMAC) A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package. #### C. Compliance schedule: (20.2.70.300D.11.c NMAC) A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance. #### **D.** Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC) A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months. #### E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC) If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement. **NOTE**: The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**. Based on information and belief formed after reasonable inquiry and as described in Section 19.2, IACX states that Red Bluff No. 3 Compressor Station is in compliance with applicable requirements. No compliance plan, compliance schedule, or compliance reports are required. IACX further states that Red Bluff No. 3 Compressor Station is not an acid rain source as defined at 40 CFR 72.6. #### 19.7 - 112(r) Risk Management Plan (RMP) Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA. Red Bluff No. 3 does not store any chemical above the threshold quantity but is subject to the General Duty Clause of 112(r). ### 19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)? Saved Date: 6/16/2021 (If the answer is yes, state which apply and provide the distances.) N/A – This facility is not located closer than 80 km to other states, Bernalillo, Indian Tribes, or pueblos. ## 19.9 - Responsible Official Provide the Responsible Official as defined in 20.2.70.7.AD NMAC: Tony Hines, Senior Vice President of Operations IACX Roswell LLC 5001 LBJ Freeway, Suite 300, Dallas, Texas 75244 972-960-3219 ## **Other Relevant Information** <u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information. Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit. There is no other relevant information. true # **Section 22: Certification** | Company Name: JACX ROSUEL LLC | | |---|--| | I, TONY HINES, hereby certify that the info | ormation and data submitted in this application are | | and as accurate as possible, to the best of my knowledge and professional | expertise and experience. | | | | | Signed this 22 day of June , 202), upon my oath or | affirmation, before a notary of the State of | | New Mexico. | | | *Signature | Date SR. V.P. of OPS Title | | Tony HinES Printed Name | SR. V.P. of OPS Title | | Scribed and sworn before me on this 20 day of | <u>, 2021.</u> | | My authorization as a notary of the State of New Mexico | expires on the | | 8 th day of December, 2024 | <u>.</u> | | | Official Seal SELMA BROWN Notary Public tate of New Mexico mm. Expires | ^{*}For Title V applications, the signature must be of the Responsible
Official as defined in 20.2.70.7.AE NMAC.